Thermodynamic Constraints on the Emergence of Intersubjectivity in Quantum Systems
- URL: http://arxiv.org/abs/2507.20736v1
- Date: Mon, 28 Jul 2025 11:39:10 GMT
- Title: Thermodynamic Constraints on the Emergence of Intersubjectivity in Quantum Systems
- Authors: Alessandro Candeloro, Tiago Debarba, Felix C. Binder,
- Abstract summary: Ideal quantum measurement requires divergent thermodynamic resources.<n>This work bridges quantum thermodynamics and the emergence of classicality in the form of intersubjectivity.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ideal quantum measurement requires divergent thermodynamic resources. This is a consequence of the third law of thermodynamics, which prohibits the preparation of the measurement pointer in a fully erased, pure state required for the acquisition of perfect, noiseless measurement information. In this work, we investigate the consequences of finite resources in the emergence of intersubjectivity as a model for measurement processes with multiple observers. Here, intersubjectivity refers to a condition in which observers agree on the observed outcome (agreement), and their local random variables exactly reproduce the original random variable for the system observable (probability reproducibility). While agreement and reproducibility are mutually implied in the case of ideal measurement, finite thermodynamic resources constrain each of them. Starting from the third law of thermodynamics, we derive how the achievability of ideal intersubjectivity is affected by restricted thermodynamic resources. Specifically, we establish a no-go theorem concerning perfect intersubjectivity and present a deviation metric to account for the influence of limited resources. We further present attainable bounds for the agreement and bias that are exclusively dependent on the initial state of the environment. In addition, we show that either by cooling or coarse-graining, we can approximate ideal intersubjectivity even with finite resources. This work bridges quantum thermodynamics and the emergence of classicality in the form of intersubjectivity.
Related papers
- Local and global approaches to the thermodynamics of pure decoherence processes in open quantum systems [44.99833362998488]
We study the nonequilibrium thermodynamics of pure decoherence processes in open quantum systems coupled to a thermal reservoir.<n>Within local approaches thermodynamic quantities only refer to the open system's degrees of freedom, while in the global approaches certain quantities are defined by referring explicitly to the reservoir degrees of freedom.
arXiv Detail & Related papers (2025-06-13T10:03:21Z) - Fundamental precision limits in finite-dimensional quantum thermal machines [1.9580473532948401]
We derive dynamics-independent bounds on the relative variance and the expectation of observables for open quantum thermal machines.<n>Our findings provide insights into fundamental limits on the precision of quantum thermal machines.
arXiv Detail & Related papers (2024-12-10T07:54:12Z) - Time-cost-error trade-off relation in thermodynamics: The third law and beyond [0.0]
In the context of cooling, the unattainability principle of the third law of thermodynamics asserts that infinite resources'' are needed to reach absolute zero.<n>We introduce the concept of it separated states', which consist of fully unoccupied and occupied states, and formulate the corresponding thermokinetic cost and error.<n>We extend these findings to the quantum regime, encompassing both Markovian and non-Markovian dynamics.
arXiv Detail & Related papers (2024-08-08T16:36:49Z) - Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Evolution of expected values in open quantum systems [41.94295877935867]
We show that in some cases the power performed by the system can be considered as a quantum observable.<n>As an application, the pure dephasing process is reinterpreted from this perspective.
arXiv Detail & Related papers (2024-02-29T06:47:28Z) - Quantum measurements and equilibration: the emergence of objective
reality via entropy maximisation [0.0]
We formalise the hypothesis that quantum measurements are driven by the natural tendency of closed systems to maximize entropy.
We lay the groundwork for self-contained models of quantum measurement, proposing improvements to our simple scheme.
arXiv Detail & Related papers (2023-02-22T10:06:17Z) - Quantum Thermodynamic Uncertainty Relations, Generalized Current
Fluctuations and Nonequilibrium Fluctuation-Dissipation Inequalities [0.0]
Thermodynamic uncertainty relations (TURs) represent one of the few broad-based and fundamental relations in our toolbox for tackling the thermodynamics of nonequilibrium systems.
We show how TURs are rooted in the quantum uncertainty principles and the fluctuation-dissipation inequalities (FDI) under fully nonequilibrium conditions.
arXiv Detail & Related papers (2022-06-20T15:26:53Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - The tight Second Law inequality for coherent quantum systems and
finite-size heat baths [0.0]
We propose a new form of the Second Law inequality that defines a tight bound for extractable work from the non-equilibrium quantum state.
In particular, we derive a formula for the locked energy in coherences, i.e. a quantum contribution that cannot be extracted as a work, and we find out its thermodynamic limit.
arXiv Detail & Related papers (2020-08-12T12:54:40Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.