Quantum measurements and equilibration: the emergence of objective
reality via entropy maximisation
- URL: http://arxiv.org/abs/2302.11253v1
- Date: Wed, 22 Feb 2023 10:06:17 GMT
- Title: Quantum measurements and equilibration: the emergence of objective
reality via entropy maximisation
- Authors: Emanuel Schwarzhans, Felix C. Binder, Marcus Huber, Maximilian P. E.
Lock
- Abstract summary: We formalise the hypothesis that quantum measurements are driven by the natural tendency of closed systems to maximize entropy.
We lay the groundwork for self-contained models of quantum measurement, proposing improvements to our simple scheme.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Textbook quantum physics features two types of dynamics, reversible unitary
dynamics and irreversible measurements. The latter stands in conflict with the
laws of thermodynamics and has evoked debate on what actually constitutes a
measurement. With the help of modern quantum statistical mechanics, we take the
first step in formalising the hypothesis that quantum measurements are instead
driven by the natural tendency of closed systems to maximize entropy, a notion
that we call the Measurement-Equilibration Hypothesis. In this paradigm, we
investigate how objective measurement outcomes can emerge within an purely
unitary framework, and find that: (i) the interactions used in standard
measurement models fail to spontaneously feature emergent objectivity and (ii)
while ideal projective measurements are impossible, we can (for a given form of
Hamiltonian) approximate them exponentially well as we collect more physical
systems together into an ``observer'' system. We thus lay the groundwork for
self-contained models of quantum measurement, proposing improvements to our
simple scheme.
Related papers
- Equilibration of objective observables in a dynamical model of quantum measurements [0.0]
This paper builds on the Quantum Darwinism framework derived to explain the emergence of the classical world.
We establish a measurement error bound to quantify the probability an observer will obtain an incorrect measurement outcome.
Using this error bound, we show that the objectifying observables readily equilibrate on average under the set of Hamiltonians.
arXiv Detail & Related papers (2024-03-26T18:04:17Z) - Quasiprobabilities in quantum thermodynamics and many-body systems: A tutorial [0.0]
We present the definition, interpretation and properties of the main quasiprobabilities known in the literature.
We illustrate the use of quasiprobabilities in quantum thermodynamics to describe the quantum statistics of work and heat.
arXiv Detail & Related papers (2024-03-25T19:22:57Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Daemonic ergotropy in continuously-monitored open quantum batteries [0.0]
daemonic ergotropy is introduced to properly describe and quantify this work extraction enhancement in the quantum regime.
We show that the corresponding daemonic ergotropy takes values between the ergotropy and the energy of the corresponding unconditional state.
The upper bound is achieved by assuming an initial pure state and a perfectly efficient projective measurement on the environment.
arXiv Detail & Related papers (2023-02-23T19:04:47Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Measurement, information, and disturbance in Hamiltonian mechanics [0.0]
Measurement in classical physics is examined as a process involving the joint evolution of object-system and measuring apparatus.
A model of measurement is proposed which lends itself to theoretical analysis using Hamiltonian mechanics and Bayesian probability.
The process of continuous measurement is then examined; yielding a novel pair of Liouville-like master equations.
arXiv Detail & Related papers (2021-04-05T06:09:28Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Non-destructively probing the thermodynamics of quantum systems with
qumodes [0.6144680854063939]
In quantum systems there is often a destruction of the system itself due to the means of measurement.
One approach to circumventing this is the use of ancillary probes that couple to the system under investigation.
We highlight means by which continuous variable quantum modes (qumodes) can be employed to probe the thermodynamics of quantum systems in and out of equilibrium.
arXiv Detail & Related papers (2017-07-13T17:57:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.