Regularizing Subspace Redundancy of Low-Rank Adaptation
- URL: http://arxiv.org/abs/2507.20745v1
- Date: Mon, 28 Jul 2025 11:52:56 GMT
- Title: Regularizing Subspace Redundancy of Low-Rank Adaptation
- Authors: Yue Zhu, Haiwen Diao, Shang Gao, Jiazuo Yu, Jiawen Zhu, Yunzhi Zhuge, Shuai Hao, Xu Jia, Lu Zhang, Ying Zhang, Huchuan Lu,
- Abstract summary: We propose ReSoRA, a method that explicitly models redundancy between mapping subspaces and adaptively Regularizes Subspace redundancy of Low-Rank Adaptation.<n>Our proposed method consistently facilitates existing state-of-the-art PETL methods across various backbones and datasets in vision-language retrieval and standard visual classification benchmarks.<n>As a training supervision, ReSoRA can be seamlessly integrated into existing approaches in a plug-and-play manner, with no additional inference costs.
- Score: 54.473090597164834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-Rank Adaptation (LoRA) and its variants have delivered strong capability in Parameter-Efficient Transfer Learning (PETL) by minimizing trainable parameters and benefiting from reparameterization. However, their projection matrices remain unrestricted during training, causing high representation redundancy and diminishing the effectiveness of feature adaptation in the resulting subspaces. While existing methods mitigate this by manually adjusting the rank or implicitly applying channel-wise masks, they lack flexibility and generalize poorly across various datasets and architectures. Hence, we propose ReSoRA, a method that explicitly models redundancy between mapping subspaces and adaptively Regularizes Subspace redundancy of Low-Rank Adaptation. Specifically, it theoretically decomposes the low-rank submatrices into multiple equivalent subspaces and systematically applies de-redundancy constraints to the feature distributions across different projections. Extensive experiments validate that our proposed method consistently facilitates existing state-of-the-art PETL methods across various backbones and datasets in vision-language retrieval and standard visual classification benchmarks. Besides, as a training supervision, ReSoRA can be seamlessly integrated into existing approaches in a plug-and-play manner, with no additional inference costs. Code is publicly available at: https://github.com/Lucenova/ReSoRA.
Related papers
- Efficient Federated Class-Incremental Learning of Pre-Trained Models via Task-agnostic Low-rank Residual Adaptation [22.454292668849035]
Federated Task-agnostic Low-rank Residual Adaptation (Fed-TaLoRA)<n>We develop a novel residual weight update mechanism that ensures accurate knowledge consolidation with minimal overhead.<n>Our methodological innovations are attributed to three key strategies: task-agnostic adaptation, post-aggregation model calibration, and strategic placement of LoRA modules.
arXiv Detail & Related papers (2025-05-18T09:19:13Z) - Sparsity Outperforms Low-Rank Projections in Few-Shot Adaptation [14.086036250269613]
Adapting Vision-Language Models to new domains with few labeled samples is a challenge due to severe overfitting and computational constraints.<n>In this paper, we propose a novel Sparse Optimization framework that dynamically adjust very few parameters.<n>Experiments on 11 diverse datasets show that SO achieves state-of-the-art few-shot adaptation performance while reducing memory overhead.
arXiv Detail & Related papers (2025-04-16T19:10:34Z) - GeneralizeFormer: Layer-Adaptive Model Generation across Test-Time Distribution Shifts [58.95913531746308]
We consider the problem of test-time domain generalization, where a model is trained on several source domains and adjusted on target domains never seen during training.<n>We propose to generate multiple layer parameters on the fly during inference by a lightweight meta-learned transformer, which we call textitGeneralizeFormer.
arXiv Detail & Related papers (2025-02-15T10:10:49Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.<n>Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.<n>We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.<n>Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - Efficient Semantic Image Synthesis via Class-Adaptive Normalization [116.63715955932174]
Class-adaptive normalization (CLADE) is a lightweight but equally-effective variant that is only adaptive to semantic class.
We introduce intra-class positional map encoding calculated from semantic layouts to modulate the normalization parameters of CLADE.
The proposed CLADE can be generalized to different SPADE-based methods while achieving comparable generation quality compared to SPADE.
arXiv Detail & Related papers (2020-12-08T18:59:32Z) - Robust Locality-Aware Regression for Labeled Data Classification [5.432221650286726]
We propose a new discriminant feature extraction framework, namely Robust Locality-Aware Regression (RLAR)
In our model, we introduce a retargeted regression to perform the marginal representation learning adaptively instead of using the general average inter-class margin.
To alleviate the disturbance of outliers and prevent overfitting, we measure the regression term and locality-aware term together with the regularization term by the L2,1 norm.
arXiv Detail & Related papers (2020-06-15T11:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.