論文の概要: Onboard Hyperspectral Super-Resolution with Deep Pushbroom Neural Network
- arxiv url: http://arxiv.org/abs/2507.20765v1
- Date: Mon, 28 Jul 2025 12:18:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:58.112917
- Title: Onboard Hyperspectral Super-Resolution with Deep Pushbroom Neural Network
- Title(参考訳): 深部プッシュボルームニューラルネットを用いた高スペクトル超解像装置の搭載
- Authors: Davide Piccinini, Diego Valsesia, Enrico Magli,
- Abstract要約: 衛星上のハイパースペクトル画像装置は、空間分解能の制限を犠牲にして、ある物質と別の物質を区別するために必要な微細なスペクトル信号を得る。
提案するニューラル・ネットワーク設計手法はDeep Pushbroom Super-Resolution (DPSR) と呼ばれるもので,画像線を沿線方向の線で処理し,これまで取得した線を利用する。
この設計は、メモリ要求と計算の複雑さを大幅に制限し、リアルタイムのパフォーマンス、すなわち、次のものを取得するのに要する時間を超解する能力を達成する。
- 参考スコア(独自算出の注目度): 21.836830270709
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral imagers on satellites obtain the fine spectral signatures essential for distinguishing one material from another at the expense of limited spatial resolution. Enhancing the latter is thus a desirable preprocessing step in order to further improve the detection capabilities offered by hyperspectral images on downstream tasks. At the same time, there is a growing interest towards deploying inference methods directly onboard of satellites, which calls for lightweight image super-resolution methods that can be run on the payload in real time. In this paper, we present a novel neural network design, called Deep Pushbroom Super-Resolution (DPSR) that matches the pushbroom acquisition of hyperspectral sensors by processing an image line by line in the along-track direction with a causal memory mechanism to exploit previously acquired lines. This design greatly limits memory requirements and computational complexity, achieving onboard real-time performance, i.e., the ability to super-resolve a line in the time it takes to acquire the next one, on low-power hardware. Experiments show that the quality of the super-resolved images is competitive or even outperforms state-of-the-art methods that are significantly more complex.
- Abstract(参考訳): 衛星上のハイパースペクトル画像装置は、空間分解能の制限を犠牲にして、ある物質と別の物質を区別するために必要な微細なスペクトル信号を得る。
したがって、下流タスクにおけるハイパースペクトル画像によって提供される検出能力をさらに改善するために、後者の強化は望ましい前処理ステップである。
同時に、衛星に直接推論手法を配置することへの関心が高まっており、これは、ペイロード上でリアルタイムで実行できる軽量画像超解像法を求めている。
本稿では,提案するニューラルネットワーク設計手法であるDeep Pushbroom Super-Resolution (DPSR)を提案する。
この設計は、メモリの要求と計算の複雑さを大幅に制限し、低消費電力のハードウェア上で、ラインの獲得に要する時間を超解する能力という、リアルタイムのパフォーマンスを達成する。
実験の結果、超解像の品質は競争力があるか、最先端の手法よりもはるかに複雑であることがわかった。
関連論文リスト
- Rethinking the Upsampling Layer in Hyperspectral Image Super Resolution [51.98465973507002]
ハイパースペクトル画像のマルチスケールチャネル特性のキャリブレーションにチャネルアテンションを組み込んだ,新しい軽量SHSRネットワーク LKCA-Net を提案する。
我々は、学習可能なアップサンプリング層の低ランク特性が軽量なSHSR手法における重要なボトルネックであることを初めて証明した。
論文 参考訳(メタデータ) (2025-01-30T15:43:34Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
本稿では,高スペクトル画像の高次元空間スペクトル情報を効率的に効率的に埋め込む方法について述べる。
我々は,HS埋め込みを,慎重に定義されたHS埋め込みイベントの集合の後方分布の近似として定式化する。
そして,提案手法を物理的に解釈可能なソース一貫性超解像フレームワークに組み込む。
3つの一般的なベンチマークデータセットに対する実験により、PDE-Netは最先端の手法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2022-05-30T06:59:01Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
サブピクセルレベルのHS超解像フレームワークを提案する。
名前が示すように、DC-Netはまず入力を共通(またはクロスセンサー)とセンサー固有のコンポーネントに分離する。
我々は,CSUネットの裏側に自己教師付き学習モジュールを付加し,素材の整合性を保証し,復元されたHS製品の詳細な外観を向上する。
論文 参考訳(メタデータ) (2022-05-07T23:40:36Z) - Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image
Super-resolution [9.022005574190182]
低分解能ハイパースペクトル像と高分解能マルチスペクトル像を融合させるトランスフォーマーに基づくネットワークを設計する。
LR-HSIは主スペクトル構造を持つため、ネットワークは空間的詳細推定に重点を置いている。
様々な実験と品質指標は、他の最先端手法と比較して、我々のアプローチの優位性を示している。
論文 参考訳(メタデータ) (2021-09-05T14:00:34Z) - UltraSR: Spatial Encoding is a Missing Key for Implicit Image
Function-based Arbitrary-Scale Super-Resolution [74.82282301089994]
本研究では,暗黙的イメージ関数に基づく,シンプルで効果的な新しいネットワーク設計であるUltraSRを提案する。
空間符号化は,次の段階の高精度暗黙的画像機能に対する欠落鍵であることを示す。
UltraSRは、すべての超解像スケールでDIV2Kベンチマークに最新のパフォーマンスを設定します。
論文 参考訳(メタデータ) (2021-03-23T17:36:42Z) - Spatial-Spectral Feedback Network for Super-Resolution of Hyperspectral
Imagery [11.76638109321532]
ハイパースペクトル画像における高次元および複雑なスペクトルパターンは、バンド間の空間情報とスペクトル情報の同時探索を困難にする。
利用可能なハイパースペクトルトレーニングサンプルの数は極めて少なく、ディープニューラルネットワークのトレーニング時にオーバーフィットする可能性がある。
グローバルスペクトル帯域からの高レベル情報を持つ局所スペクトル帯域間の低レベル表現を洗練するための新しい空間スペクトルフィードバックネットワーク(ssfn)を提案する。
論文 参考訳(メタデータ) (2021-03-07T13:28:48Z) - Multi-image Super Resolution of Remotely Sensed Images using Residual
Feature Attention Deep Neural Networks [1.3764085113103222]
本研究は,マルチイメージ超解像課題に効果的に取り組む新しい残像注意モデル(RAMS)を提案する。
本研究では,3次元畳み込みによる視覚特徴の注意機構を導入し,意識的なデータ融合と情報抽出を実現する。
我々の表現学習ネットワークは、冗長な低周波信号を流すためにネストした残差接続を広範囲に利用している。
論文 参考訳(メタデータ) (2020-07-06T22:54:02Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
空間情報とスペクトル情報の相互モダリティ分布が問題となる。
本稿では,PZRes-Netという,新しいテクスライトウェイトなディープニューラルネットワークベースのフレームワークを提案する。
本フレームワークは,高分解能かつテクテッセロ中心の残像を学習し,シーンの空間的詳細を高頻度で表現する。
論文 参考訳(メタデータ) (2020-06-18T06:32:11Z) - Hyperspectral Image Super-resolution via Deep Spatio-spectral
Convolutional Neural Networks [32.10057746890683]
本稿では,高分解能ハイパースペクトル像と高分解能マルチスペクトル像を融合させる,深部畳み込みニューラルネットワークの簡易かつ効率的なアーキテクチャを提案する。
提案したネットワークアーキテクチャは,近年の最先端ハイパースペクトル画像の超解像化手法と比較して,最高の性能を達成している。
論文 参考訳(メタデータ) (2020-05-29T05:56:50Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。