When Brain Foundation Model Meets Cauchy-Schwarz Divergence: A New Framework for Cross-Subject Motor Imagery Decoding
- URL: http://arxiv.org/abs/2507.21037v1
- Date: Mon, 28 Jul 2025 17:55:26 GMT
- Title: When Brain Foundation Model Meets Cauchy-Schwarz Divergence: A New Framework for Cross-Subject Motor Imagery Decoding
- Authors: Jinzhou Wu, Baoping Tang, Qikang Li, Yi Wang, Cheng Li, Shujian Yu,
- Abstract summary: MI-EEG decoding remains challenging due to substantial inter-subject variability and limited labeled target data.<n>Many existing multi-source domain adaptation methods indiscriminately incorporate all available source domains.<n>We propose a novel MSDA framework that leverages a pretrained large Brain Foundation Model (BFM) for dynamic and informed source subject selection.
- Score: 21.816266585365042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decoding motor imagery (MI) electroencephalogram (EEG) signals, a key non-invasive brain-computer interface (BCI) paradigm for controlling external systems, has been significantly advanced by deep learning. However, MI-EEG decoding remains challenging due to substantial inter-subject variability and limited labeled target data, which necessitate costly calibration for new users. Many existing multi-source domain adaptation (MSDA) methods indiscriminately incorporate all available source domains, disregarding the large inter-subject differences in EEG signals, which leads to negative transfer and excessive computational costs. Moreover, while many approaches focus on feature distribution alignment, they often neglect the explicit dependence between features and decision-level outputs, limiting their ability to preserve discriminative structures. To address these gaps, we propose a novel MSDA framework that leverages a pretrained large Brain Foundation Model (BFM) for dynamic and informed source subject selection, ensuring only relevant sources contribute to adaptation. Furthermore, we employ Cauchy-Schwarz (CS) and Conditional CS (CCS) divergences to jointly perform feature-level and decision-level alignment, enhancing domain invariance while maintaining class discriminability. Extensive evaluations on two benchmark MI-EEG datasets demonstrate that our framework outperforms a broad range of state-of-the-art baselines. Additional experiments with a large source pool validate the scalability and efficiency of BFM-guided selection, which significantly reduces training time without sacrificing performance.
Related papers
- Learning from Heterogeneous Structural MRI via Collaborative Domain Adaptation for Late-Life Depression Assessment [24.340328016766183]
We propose a Collaborative Domain Adaptation framework for LLD detection using T1-weighted MRIs.<n>The framework consists of three stages: supervised training on labeled source data, self-supervised target feature adaptation and collaborative training on unlabeled target data.<n>Experiments conducted on multi-site T1-weighted MRI data demonstrate that the framework consistently outperforms state-of-the-art unsupervised domain adaptation methods.
arXiv Detail & Related papers (2025-07-30T01:38:32Z) - Channel Fingerprint Construction for Massive MIMO: A Deep Conditional Generative Approach [65.47969413708344]
We introduce the concept of CF twins and design a conditional generative diffusion model (CGDM)<n>We employ a variational inference technique to derive the evidence lower bound (ELBO) for the log-marginal distribution of the observed fine-grained CF conditioned on the coarse-grained CF.<n>We show that the proposed approach exhibits significant improvement in reconstruction performance compared to the baselines.
arXiv Detail & Related papers (2025-05-12T01:36:06Z) - Progressive Multi-Source Domain Adaptation for Personalized Facial Expression Recognition [51.61979855488214]
Personalized facial expression recognition (FER) involves adapting a machine learning model using samples from labeled sources and unlabeled target domains.<n>We propose a progressive MSDA approach that gradually introduces information from subjects based on their similarity to the target subject.<n>Our experiments show the effectiveness of our proposed method on pain datasets: Biovid and UNBC-McMaster.
arXiv Detail & Related papers (2025-04-05T19:14:51Z) - Knowledge Distillation and Enhanced Subdomain Adaptation Using Graph Convolutional Network for Resource-Constrained Bearing Fault Diagnosis [0.0]
We propose a progressive knowledge distillation framework that transfers knowledge from a complex teacher model to a compact and efficient student model.<n>We introduce Enhanced Local Maximum Mean Squared Discrepancy (ELMMSD), which leverages mean and variance statistics in the Reproducing Kernel Hilbert Space (RKHS) and incorporates a priori probability distributions between labels.
arXiv Detail & Related papers (2025-01-13T10:05:47Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
Video anomaly detection under weak supervision presents significant challenges.
We present a weakly supervised anomaly detection framework that focuses on efficient context modeling and enhanced semantic discriminability.
Our approach significantly improves the detection accuracy of certain anomaly sub-classes, underscoring its practical value and efficacy.
arXiv Detail & Related papers (2023-06-26T06:45:16Z) - Unifying and Personalizing Weakly-supervised Federated Medical Image
Segmentation via Adaptive Representation and Aggregation [1.121358474059223]
Federated learning (FL) enables multiple sites to collaboratively train powerful deep models without compromising data privacy and security.
Weakly supervised segmentation, which uses sparsely-grained supervision, is increasingly being paid attention to due to its great potential of reducing annotation costs.
We propose a novel personalized FL framework for medical image segmentation, named FedICRA, which uniformly leverages heterogeneous weak supervision.
arXiv Detail & Related papers (2023-04-12T06:32:08Z) - Source-free Domain Adaptation Requires Penalized Diversity [60.04618512479438]
Source-free domain adaptation (SFDA) was introduced to address knowledge transfer between different domains in the absence of source data.
In unsupervised SFDA, the diversity is limited to learning a single hypothesis on the source or learning multiple hypotheses with a shared feature extractor.
We propose a novel unsupervised SFDA algorithm that promotes representational diversity through the use of separate feature extractors.
arXiv Detail & Related papers (2023-04-06T00:20:19Z) - Memory Consistent Unsupervised Off-the-Shelf Model Adaptation for
Source-Relaxed Medical Image Segmentation [13.260109561599904]
Unsupervised domain adaptation (UDA) has been a vital protocol for migrating information learned from a labeled source domain to an unlabeled heterogeneous target domain.
We propose "off-the-shelf (OS)" UDA (OSUDA), aimed at image segmentation, by adapting an OS segmentor trained in a source domain to a target domain, in the absence of source domain data in adaptation.
arXiv Detail & Related papers (2022-09-16T13:13:50Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Towards Fair Knowledge Transfer for Imbalanced Domain Adaptation [61.317911756566126]
We propose a Towards Fair Knowledge Transfer framework to handle the fairness challenge in imbalanced cross-domain learning.
Specifically, a novel cross-domain mixup generation is exploited to augment the minority source set with target information to enhance fairness.
Our model significantly improves over 20% on two benchmarks in terms of the overall accuracy.
arXiv Detail & Related papers (2020-10-23T06:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.