論文の概要: A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence
- arxiv url: http://arxiv.org/abs/2507.21046v1
- Date: Mon, 28 Jul 2025 17:59:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:58.246977
- Title: A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence
- Title(参考訳): 自己進化型エージェントの探索 : 人工知能への道のり
- Authors: Huan-ang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, Hongru Wang, Han Xiao, Yuhang Zhou, Shaokun Zhang, Jiayi Zhang, Jinyu Xiang, Yixiong Fang, Qiwen Zhao, Dongrui Liu, Qihan Ren, Cheng Qian, Zhenghailong Wang, Minda Hu, Huazheng Wang, Qingyun Wu, Heng Ji, Mengdi Wang,
- Abstract要約: 大きな言語モデル(LLM)は強力な能力を示しているが、基本的に静的である。
LLMはますますオープンでインタラクティブな環境にデプロイされているため、この静的な性質は重要なボトルネックとなっている。
この調査は、自己進化エージェントの体系的で包括的なレビューを初めて提供する。
- 参考スコア(独自算出の注目度): 82.10406690705227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static, unable to adapt their internal parameters to novel tasks, evolving knowledge domains, or dynamic interaction contexts. As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck, necessitating agents that can adaptively reason, act, and evolve in real time. This paradigm shift -- from scaling static models to developing self-evolving agents -- has sparked growing interest in architectures and methods enabling continual learning and adaptation from data, interactions, and experiences. This survey provides the first systematic and comprehensive review of self-evolving agents, organized around three foundational dimensions -- what to evolve, when to evolve, and how to evolve. We examine evolutionary mechanisms across agent components (e.g., models, memory, tools, architecture), categorize adaptation methods by stages (e.g., intra-test-time, inter-test-time), and analyze the algorithmic and architectural designs that guide evolutionary adaptation (e.g., scalar rewards, textual feedback, single-agent and multi-agent systems). Additionally, we analyze evaluation metrics and benchmarks tailored for self-evolving agents, highlight applications in domains such as coding, education, and healthcare, and identify critical challenges and research directions in safety, scalability, and co-evolutionary dynamics. By providing a structured framework for understanding and designing self-evolving agents, this survey establishes a roadmap for advancing adaptive agentic systems in both research and real-world deployments, ultimately shedding lights to pave the way for the realization of Artificial Super Intelligence (ASI), where agents evolve autonomously, performing at or beyond human-level intelligence across a wide array of tasks.
- Abstract(参考訳): 大きな言語モデル(LLM)は強力な能力を示しているが、基本的に静的であり、内部パラメータを新しいタスク、知識ドメインの進化、動的相互作用コンテキストに適応できない。
LLMはますますオープンエンドでインタラクティブな環境に展開されているため、この静的な性質は重要なボトルネックとなり、適応的に推論し、行動し、リアルタイムで進化するエージェントを必要としている。
このパラダイムシフト — 静的モデルのスケーリングから自己進化型エージェントの開発 — は、データやインタラクション、エクスペリエンスからの継続的な学習と適応を可能にするアーキテクチャやメソッドへの関心を喚起するものだ。
この調査は、どのように進化するか、いつ進化するか、どのように進化するかという3つの基本的な側面を中心に組織された、自己進化するエージェントの体系的で包括的なレビューを初めて提供する。
エージェントコンポーネント(モデル,メモリ,ツール,アーキテクチャ)間の進化のメカニズムについて検討し,段階別適応法(テスト時間内,テスト時間間)を分類し,進化的適応を導くアルゴリズム的およびアーキテクチャ的設計(スカラー報酬,テキストフィードバック,シングルエージェント,マルチエージェントシステム)を分析した。
さらに、自己進化エージェントに適した評価指標とベンチマークを分析し、コーディング、教育、医療といった分野のアプリケーションを強調し、安全性、スケーラビリティ、共進化的ダイナミクスにおける重要な課題と研究方向を特定します。
自己進化型エージェントの理解と設計のための構造化されたフレームワークを提供することにより、この調査は、研究と実世界のデプロイメントの両方において適応型エージェントシステムを進化させるロードマップを確立し、最終的には、エージェントが自律的に進化し、幅広いタスクにわたって人間レベルのインテリジェンスを実行する、人工知能(ASI)の実現の道を開くための光を隠蔽する。
関連論文リスト
- Agentic Satellite-Augmented Low-Altitude Economy and Terrestrial Networks: A Survey on Generative Approaches [76.12691010182802]
本調査は,衛星搭載低高度経済と地上ネットワーク(SLAETN)におけるエージェント人工知能(AI)の実現に焦点をあてる。
SLAETNのアーキテクチャと特徴を紹介するとともに,衛星,空中,地上コンポーネントの統合において生じる課題を分析する。
これらのモデルが,コミュニケーション強化,セキュリティとプライバシ保護,インテリジェントな衛星タスクという,3つの領域にわたるエージェント機能をどのように強化するかを検討する。
論文 参考訳(メタデータ) (2025-07-19T14:07:05Z) - Graphs Meet AI Agents: Taxonomy, Progress, and Future Opportunities [117.49715661395294]
データ構造化は、複雑で非組織的なデータをよく構造化された形式に変換することで、有望な役割を果たす。
この調査では、グラフがAIエージェントにどのように権限を与えるかを、初めて体系的にレビューする。
論文 参考訳(メタデータ) (2025-06-22T12:59:12Z) - AI Agent Behavioral Science [29.262537008412412]
AIエージェント行動科学は、行動の体系的な観察、仮説をテストするための介入の設計、そしてAIエージェントが時間とともにどのように行動し、適応し、相互作用するかの理論的指導による解釈に焦点を当てている。
我々は、個々のエージェント、マルチエージェント、人間とエージェントのインタラクション設定にまたがる研究の体系化を行い、この視点が、公正さ、安全性、解釈可能性、説明責任、プライバシーを行動特性として扱うことによって、責任あるAIにどのように影響を与えるかを実証する。
論文 参考訳(メタデータ) (2025-06-04T08:12:32Z) - Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
異種エージェント間のシームレスな相互接続、動的発見、協調的なオーケストレーションを可能にする基盤となるフレームワークとして、エージェントのインターネット(IoA)を紹介した。
我々は,機能通知と発見,適応通信プロトコル,動的タスクマッチング,コンセンサスとコンフリクト解決機構,インセンティブモデルなど,IoAの重要な運用イネーラを分析した。
論文 参考訳(メタデータ) (2025-05-12T02:04:37Z) - Artificial Behavior Intelligence: Technology, Challenges, and Future Directions [1.5237607855633524]
本稿では,ABI(Artificial Behavior Intelligence)の技術的枠組みを定義する。
ABIは、人間の姿勢、表情、感情、行動シーケンス、文脈的手がかりを包括的に分析し、解釈する。
ポーズ推定、顔と感情の認識、シーケンシャルな行動分析、文脈認識モデリングなど、ABIの本質的なコンポーネントについて詳述する。
論文 参考訳(メタデータ) (2025-05-06T08:45:44Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
大規模言語モデル(LLM)の出現は、人工知能の変革的シフトを触媒している。
これらのエージェントがAI研究と実践的応用をますます推進するにつれて、その設計、評価、継続的な改善は複雑で多面的な課題を呈している。
この調査は、モジュール化された脳にインスパイアされたアーキテクチャ内でインテリジェントエージェントをフレーミングする、包括的な概要を提供する。
論文 参考訳(メタデータ) (2025-03-31T18:00:29Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。