Rep-MTL: Unleashing the Power of Representation-level Task Saliency for Multi-Task Learning
- URL: http://arxiv.org/abs/2507.21049v1
- Date: Mon, 28 Jul 2025 17:59:28 GMT
- Title: Rep-MTL: Unleashing the Power of Representation-level Task Saliency for Multi-Task Learning
- Authors: Zedong Wang, Siyuan Li, Dan Xu,
- Abstract summary: Rep-MTL exploits the representation-level task saliency to quantify interactions between task-specific optimization and shared representation learning.<n>Rep-MTL aims to mitigate negative transfer by maintaining the effective training of individual tasks instead pure conflict-solving.
- Score: 27.472039054277644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the promise of Multi-Task Learning in leveraging complementary knowledge across tasks, existing multi-task optimization (MTO) techniques remain fixated on resolving conflicts via optimizer-centric loss scaling and gradient manipulation strategies, yet fail to deliver consistent gains. In this paper, we argue that the shared representation space, where task interactions naturally occur, offers rich information and potential for operations complementary to existing optimizers, especially for facilitating the inter-task complementarity, which is rarely explored in MTO. This intuition leads to Rep-MTL, which exploits the representation-level task saliency to quantify interactions between task-specific optimization and shared representation learning. By steering these saliencies through entropy-based penalization and sample-wise cross-task alignment, Rep-MTL aims to mitigate negative transfer by maintaining the effective training of individual tasks instead pure conflict-solving, while explicitly promoting complementary information sharing. Experiments are conducted on four challenging MTL benchmarks covering both task-shift and domain-shift scenarios. The results show that Rep-MTL, even paired with the basic equal weighting policy, achieves competitive performance gains with favorable efficiency. Beyond standard performance metrics, Power Law exponent analysis demonstrates Rep-MTL's efficacy in balancing task-specific learning and cross-task sharing. The project page is available at HERE.
Related papers
- Robust-Multi-Task Gradient Boosting [6.718184400443239]
Multi-task learning (MTL) has shown effectiveness in exploiting shared information across tasks to improve generalization.<n>We propose Robust-Multi-Task Gradient Boosting (R-MTGB), a novel boosting framework that explicitly models and adapts to task heterogeneity during training.<n>R-MTGB structures the learning process into three blocks: (1) learning shared patterns, (2) partitioning sequential tasks into outliers and non-outliers with regularized parameters, and (3) fine-tuning task-specific predictors.
arXiv Detail & Related papers (2025-07-15T15:31:12Z) - Efficient Multi-Task Reinforcement Learning via Task-Specific Action Correction [10.388605128396678]
Task-Specific Action Correction is designed for simultaneous learning of multiple tasks.
ACP incorporates goal-oriented sparse rewards, enabling an agent to adopt a long-term perspective.
Additional rewards transform the original problem into a multi-objective MTRL problem.
arXiv Detail & Related papers (2024-04-09T02:11:35Z) - Towards Principled Task Grouping for Multi-Task Learning [12.757893623250252]
Multi-task learning (MTL) aims to leverage shared information among tasks to improve learning efficiency and accuracy.<n> MTL often struggles to effectively manage positive and negative transfer between tasks, which can hinder performance improvements.<n>This paper introduces a principled approach to task grouping in MTL, advancing beyond existing methods by addressing key theoretical and practical limitations.
arXiv Detail & Related papers (2024-02-23T13:51:20Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
We propose a data curriculum method, namely Data-CUBE, that arranges the orders of all the multi-task data for training.
In the task level, we aim to find the optimal task order to minimize the total cross-task interference risk.
In the instance level, we measure the difficulty of all instances per task, then divide them into the easy-to-difficult mini-batches for training.
arXiv Detail & Related papers (2024-01-07T18:12:20Z) - Equitable Multi-task Learning [18.65048321820911]
Multi-task learning (MTL) has achieved great success in various research domains, such as CV, NLP and IR.
We propose a novel multi-task optimization method, named EMTL, to achieve equitable MTL.
Our method stably outperforms state-of-the-art methods on the public benchmark datasets of two different research domains.
arXiv Detail & Related papers (2023-06-15T03:37:23Z) - "It's a Match!" -- A Benchmark of Task Affinity Scores for Joint
Learning [74.14961250042629]
Multi-Task Learning (MTL) promises attractive, characterizing the conditions of its success is still an open problem in Deep Learning.
Estimateing task affinity for joint learning is a key endeavor.
Recent work suggests that the training conditions themselves have a significant impact on the outcomes of MTL.
Yet, the literature is lacking a benchmark to assess the effectiveness of tasks affinity estimation techniques.
arXiv Detail & Related papers (2023-01-07T15:16:35Z) - Multi-Task Learning as a Bargaining Game [63.49888996291245]
In Multi-task learning (MTL), a joint model is trained to simultaneously make predictions for several tasks.
Since the gradients of these different tasks may conflict, training a joint model for MTL often yields lower performance than its corresponding single-task counterparts.
We propose viewing the gradients combination step as a bargaining game, where tasks negotiate to reach an agreement on a joint direction of parameter update.
arXiv Detail & Related papers (2022-02-02T13:21:53Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
Multi-task learning aims to explore task relatedness to improve individual tasks.
We propose variational multi-task learning (VMTL), a general probabilistic inference framework for learning multiple related tasks.
arXiv Detail & Related papers (2021-11-09T18:49:45Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - Task Uncertainty Loss Reduce Negative Transfer in Asymmetric Multi-task
Feature Learning [0.0]
Multi-task learning (MTL) can improve task performance overall relative to single-task learning (STL), but can hide negative transfer (NT)
Asymmetric multitask feature learning (AMTFL) is an approach that tries to address this by allowing tasks with higher loss values to have smaller influence on feature representations for learning other tasks.
We present examples of NT in two datasets (image recognition and pharmacogenomics) and tackle this challenge by using aleatoric homoscedastic uncertainty to capture the relative confidence between tasks, and set weights for task loss.
arXiv Detail & Related papers (2020-12-17T13:30:45Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.