SemRAG: Semantic Knowledge-Augmented RAG for Improved Question-Answering
- URL: http://arxiv.org/abs/2507.21110v1
- Date: Thu, 10 Jul 2025 11:56:25 GMT
- Title: SemRAG: Semantic Knowledge-Augmented RAG for Improved Question-Answering
- Authors: Kezhen Zhong, Basem Suleiman, Abdelkarim Erradi, Shijing Chen,
- Abstract summary: SemRAG is an enhanced Retrieval Augmented Generation (RAG) framework that efficiently integrates domain-specific knowledge.<n>It employs a semantic chunking algorithm that segments documents based on the cosine similarity from sentence embeddings, preserving semantic coherence.<n>By structuring retrieved information into knowledge graphs, SemRAG captures relationships between entities, improving retrieval accuracy and contextual understanding.
- Score: 2.4874078867686085
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper introduces SemRAG, an enhanced Retrieval Augmented Generation (RAG) framework that efficiently integrates domain-specific knowledge using semantic chunking and knowledge graphs without extensive fine-tuning. Integrating domain-specific knowledge into large language models (LLMs) is crucial for improving their performance in specialized tasks. Yet, existing adaptations are computationally expensive, prone to overfitting and limit scalability. To address these challenges, SemRAG employs a semantic chunking algorithm that segments documents based on the cosine similarity from sentence embeddings, preserving semantic coherence while reducing computational overhead. Additionally, by structuring retrieved information into knowledge graphs, SemRAG captures relationships between entities, improving retrieval accuracy and contextual understanding. Experimental results on MultiHop RAG and Wikipedia datasets demonstrate SemRAG has significantly enhances the relevance and correctness of retrieved information from the Knowledge Graph, outperforming traditional RAG methods. Furthermore, we investigate the optimization of buffer sizes for different data corpus, as optimizing buffer sizes tailored to specific datasets can further improve retrieval performance, as integration of knowledge graphs strengthens entity relationships for better contextual comprehension. The primary advantage of SemRAG is its ability to create an efficient, accurate domain-specific LLM pipeline while avoiding resource-intensive fine-tuning. This makes it a practical and scalable approach aligned with sustainability goals, offering a viable solution for AI applications in domain-specific fields.
Related papers
- Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - KARE-RAG: Knowledge-Aware Refinement and Enhancement for RAG [63.82127103851471]
Retrieval-Augmented Generation (RAG) enables large language models to access broader knowledge sources.<n>We demonstrate that enhancing generative models' capacity to process noisy content is equally critical for robust performance.<n>We present KARE-RAG, which improves knowledge utilization through three key innovations.
arXiv Detail & Related papers (2025-06-03T06:31:17Z) - ReGUIDE: Data Efficient GUI Grounding via Spatial Reasoning and Search [53.40810298627443]
ReGUIDE is a framework for web grounding that enables MLLMs to learn data efficiently through self-generated reasoning and spatial-aware criticism.<n>Our experiments demonstrate that ReGUIDE significantly advances web grounding performance across multiple benchmarks.
arXiv Detail & Related papers (2025-05-21T08:36:18Z) - DO-RAG: A Domain-Specific QA Framework Using Knowledge Graph-Enhanced Retrieval-Augmented Generation [4.113142669523488]
Domain-specific QA systems require generative fluency but high factual accuracy grounded in structured expert knowledge.<n>We propose DO-RAG, a scalable and customizable hybrid QA framework that integrates multi-level knowledge graph construction with semantic vector retrieval.
arXiv Detail & Related papers (2025-05-17T06:40:17Z) - Knowledge Graph Completion with Relation-Aware Anchor Enhancement [50.50944396454757]
We propose a relation-aware anchor enhanced knowledge graph completion method (RAA-KGC)<n>We first generate anchor entities within the relation-aware neighborhood of the head entity.<n>Then, by pulling the query embedding towards the neighborhoods of the anchors, it is tuned to be more discriminative for target entity matching.
arXiv Detail & Related papers (2025-04-08T15:22:08Z) - Scaling Test-Time Inference with Policy-Optimized, Dynamic Retrieval-Augmented Generation via KV Caching and Decoding [2.368662284133926]
We present a framework for enhancing Retrieval-Augmented Generation (RAG) systems through dynamic retrieval strategies and reinforcement fine-tuning.<n>Our framework integrates two complementary techniques: Policy-d RetrievalAugmented Generation (PORAG) and Adaptive Token-Layer Attention Scoring (ATLAS)<n>Our framework reduces hallucinations, strengthens domain-specific reasoning, and achieves significant efficiency and scalability gains over traditional RAG systems.
arXiv Detail & Related papers (2025-04-02T01:16:10Z) - Enhancing Large Language Models (LLMs) for Telecommunications using Knowledge Graphs and Retrieval-Augmented Generation [52.8352968531863]
Large language models (LLMs) have made significant progress in general-purpose natural language processing tasks.<n>This paper presents a novel framework that combines knowledge graph (KG) and retrieval-augmented generation (RAG) techniques to enhance LLM performance in the telecom domain.
arXiv Detail & Related papers (2025-03-31T15:58:08Z) - ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation [16.204046295248546]
Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models (LLMs)<n>We introduce a novel graph-based RAG approach, called Attributed Community-based Hierarchical RAG (ArchRAG)<n>We build a novel hierarchical index structure for the attributed communities and develop an effective online retrieval method.<n>ArchRAG has been successfully applied to domain knowledge QA in Huawei Cloud Computing.
arXiv Detail & Related papers (2025-02-14T03:28:36Z) - TOBUGraph: Knowledge Graph-Based Retrieval for Enhanced LLM Performance Beyond RAG [3.8704987495086542]
TOBUGraph is a graph-based retrieval framework that first constructs the knowledge graph from unstructured data.<n>It extracts structured knowledge and diverse relationships among data, going beyond RAG's text-to-text similarity.<n>We demonstrate TOBUGraph's effectiveness in TOBU, a real-world application in production for personal memory organization and retrieval.
arXiv Detail & Related papers (2024-12-06T22:05:39Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
We propose WeKnow-RAG, which integrates Web search and Knowledge Graphs into a "Retrieval-Augmented Generation (RAG)" system.
First, the accuracy and reliability of LLM responses are improved by combining the structured representation of Knowledge Graphs with the flexibility of dense vector retrieval.
Our approach effectively balances the efficiency and accuracy of information retrieval, thus improving the overall retrieval process.
arXiv Detail & Related papers (2024-08-14T15:19:16Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.