論文の概要: TTS-1 Technical Report
- arxiv url: http://arxiv.org/abs/2507.21138v1
- Date: Tue, 22 Jul 2025 23:57:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-30 17:08:54.983137
- Title: TTS-1 Technical Report
- Title(参考訳): TTS-1技術報告
- Authors: Oleg Atamanenko, Anna Chalova, Joseph Coombes, Nikki Cope, Phillip Dang, Zhifeng Deng, Jimmy Du, Michael Ermolenko, Feifan Fan, Yufei Feng, Cheryl Fichter, Pavel Filimonov, Louis Fischer, Kylan Gibbs, Valeria Gusarova, Pavel Karpik, Andreas Assad Kottner, Ian Lee, Oliver Louie, Jasmine Mai, Mikhail Mamontov, Suri Mao, Nurullah Morshed, Igor Poletaev, Florin Radu, Dmytro Semernia, Evgenii Shingarev, Vikram Sivaraja, Peter Skirko, Rinat Takhautdinov, Robert Villahermosa, Jean Wang,
- Abstract要約: Inworld TTS-1は、Transformerベースの2つの自動回帰テキスト音声モデルのセットである。
TTS-1とTS-1-Maxは低レイテンシで48kHzの高分解能音声を生成することができる。
私たちはまた、MITライセンスの下でトレーニングとモデリングのコードをオープンソースにしています。
- 参考スコア(独自算出の注目度): 0.9134656817901009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Inworld TTS-1, a set of two Transformer-based autoregressive text-to-speech (TTS) models. Our largest model, TTS-1-Max, has 8.8B parameters and is designed for utmost quality and expressiveness in demanding applications. TTS-1 is our most efficient model, with 1.6B parameters, built for real-time speech synthesis and on-device use cases. By scaling train-time compute and applying a sequential process of pre-training, fine-tuning, and RL-alignment of the speech-language model (SpeechLM) component, both models achieve state-of-the-art performance on a variety of benchmarks, demonstrating exceptional quality relying purely on in-context learning of the speaker's voice. Inworld TTS-1 and TTS-1-Max can generate high-resolution 48 kHz speech with low latency, and support 11 languages with fine-grained emotional control and non-verbal vocalizations through audio markups. We additionally open-source our training and modeling code under an MIT license.
- Abstract(参考訳): Inworld TTS-1はTransformerをベースとした2つの自動回帰テキスト合成(TTS)モデルである。
我々の最大のモデルであるTS-1-Maxは8.8Bのパラメータを持ち、要求されるアプリケーションにおける最も品質と表現性のために設計されている。
TTS-1は、リアルタイム音声合成とオンデバイスユースケースのために構築された1.6Bパラメータを持つ、我々の最も効率的なモデルである。
列車時間計算をスケールし、言語モデル(SpeechLM)コンポーネントの事前学習、微調整、RLアライメントのシーケンシャルなプロセスを適用することにより、どちらのモデルも様々なベンチマークで最先端のパフォーマンスを達成し、話者の声の文脈内学習に純粋に依存する例外的な品質を示す。
Inworld TTS-1 と TTS-1-Max は48kHzの高分解能音声を低レイテンシで生成できる。
私たちはまた、MITライセンスの下でトレーニングとモデリングのコードをオープンソースにしています。
関連論文リスト
- MegaTTS 3: Sparse Alignment Enhanced Latent Diffusion Transformer for Zero-Shot Speech Synthesis [56.25862714128288]
本稿では,イノベーティブなスパースアライメントアルゴリズムを備えたゼロショット音声合成(TTS)システムであるtextitMegaTTS 3を提案する。
具体的には,検索空間を制限せずにアライメントの困難さを軽減するために,MegaTTS 3にスパースアライメント境界を提供する。
実験により、MegaTTS 3は最先端のゼロショットTTS音声品質を実現し、アクセント強度を柔軟に制御できることが示されている。
論文 参考訳(メタデータ) (2025-02-26T08:22:00Z) - Towards Lightweight and Stable Zero-shot TTS with Self-distilled Representation Disentanglement [17.020173869112163]
軽量で安定なテキスト音声合成システム(TTS)を提案する。
本稿では,音源音声から言語内容や話者属性を効果的にモデル化する新しいTSアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-01-15T04:17:48Z) - DiTTo-TTS: Diffusion Transformers for Scalable Text-to-Speech without Domain-Specific Factors [8.419383213705789]
本稿では,Diffusion Transformer (DiT) ベースのTSモデルであるDiTTo-TTSを導入し,LDMベースのTSがドメイン固有の要因を伴わずに最先端の性能を達成できるかどうかを検討する。
最小修正のDiTは、U-Netよりも優れており、音声長予測器による可変長モデリング、音声潜在表現のセマンティックアライメントなどの条件は、さらなる拡張の鍵となる。
論文 参考訳(メタデータ) (2024-06-17T11:25:57Z) - EM-TTS: Efficiently Trained Low-Resource Mongolian Lightweight Text-to-Speech [4.91849983180793]
本稿では,深層畳み込みニューラルネットワークに基づくテキスト音声合成システムを提案する。
私たちのモデルは、Text2SpectrumとSSRNの2つのステージで構成されています。
実験の結果,合成音声の品質と自然性を確保しつつ,学習時間とパラメータを低減できることがわかった。
論文 参考訳(メタデータ) (2024-03-13T01:27:57Z) - Cross-Speaker Encoding Network for Multi-Talker Speech Recognition [74.97576062152709]
Cross-MixSpeaker
ネットワークは、話者間の表現を集約することでSIMOモデルの制限に対処する。
ネットワークはSOTと統合され、SIMOとSISOの両方の利点を利用する。
論文 参考訳(メタデータ) (2024-01-08T16:37:45Z) - Pheme: Efficient and Conversational Speech Generation [52.34331755341856]
我々は,コンパクトだが高性能な会話型TSモデルを提供するPhemeモデルシリーズを紹介する。
小規模の会話データで効率的にトレーニングでき、データ要求を10倍に削減できるが、自動回帰的TSモデルの品質にマッチする。
論文 参考訳(メタデータ) (2024-01-05T14:47:20Z) - Mega-TTS: Zero-Shot Text-to-Speech at Scale with Intrinsic Inductive
Bias [71.94109664001952]
Mega-TTSは、大規模な野生データで訓練された新しいゼロショットTSシステムである。
Mega-TTS はゼロショット TTS 音声編集や言語間 TTS タスクにおいて最先端 TTS システムを超えていることを示す。
論文 参考訳(メタデータ) (2023-06-06T08:54:49Z) - Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers [92.55131711064935]
テキストから音声合成(TTS)のための言語モデリング手法を提案する。
具体的には、市販のニューラルオーディオモデルから派生した離散符号を用いて、ニューラルネットワークモデル(Vall-E)を訓練する。
Vall-Eは、コンテキスト内学習機能を導入し、高品質なパーソナライズされた音声の合成に使用できる。
論文 参考訳(メタデータ) (2023-01-05T15:37:15Z) - Any-speaker Adaptive Text-To-Speech Synthesis with Diffusion Models [65.28001444321465]
Grad-StyleSpeechは拡散モデルに基づく任意の話者適応型TSフレームワークである。
数秒の参照音声が与えられた場合、ターゲット話者の声と非常によく似た、非常に自然な音声を生成することができる。
英語のベンチマークでは、話者適応型TTSベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2022-11-17T07:17:24Z) - Transfer Learning Framework for Low-Resource Text-to-Speech using a
Large-Scale Unlabeled Speech Corpus [10.158584616360669]
テキスト音声(TTS)モデルのトレーニングには,大規模テキストラベル付き音声コーパスが必要となる。
本稿では、事前学習に大量のラベルなし音声データセットを利用するTSの転送学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T11:26:56Z) - YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice
Conversion for everyone [0.7927630381442314]
YourTTSは、ゼロショットマルチスピーカーTSのタスクに多言語アプローチのパワーをもたらす。
我々は、VCTKデータセット上のゼロショット音声変換において、ゼロショットマルチスピーカTSとSOTAに匹敵する結果を得る。
1分未満の音声でYourTTSモデルを微調整し、最先端の結果を音声に類似し、妥当な品質で達成することが可能である。
論文 参考訳(メタデータ) (2021-12-04T19:50:29Z) - Pretraining Techniques for Sequence-to-Sequence Voice Conversion [57.65753150356411]
シークエンス・トゥ・シークエンス(seq2seq)音声変換(VC)モデルは、韻律を変換する能力によって魅力的である。
我々は,大規模コーパスが容易に利用できる他の音声処理タスク(通常,テキスト音声(TTS)と自動音声認識(ASR))から知識を伝達することを提案する。
このような事前訓練されたASRまたはTSモデルパラメータを持つVCモデルは、高忠実で高知能な変換可能な音声に対して効果的な隠れ表現を生成することができると論じる。
論文 参考訳(メタデータ) (2020-08-07T11:02:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。