論文の概要: FedBAP: Backdoor Defense via Benign Adversarial Perturbation in Federated Learning
- arxiv url: http://arxiv.org/abs/2507.21177v1
- Date: Sat, 26 Jul 2025 07:00:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-30 17:08:55.032858
- Title: FedBAP: Backdoor Defense via Benign Adversarial Perturbation in Federated Learning
- Title(参考訳): FedBAP:フェデレートラーニングにおける良性逆境摂動によるバックドアディフェンス
- Authors: Xinhai Yan, Libing Wu, Zhuangzhuang Zhang, Bingyi Liu, Lijuan Huo, Jing Wang,
- Abstract要約: フェデレートラーニング(FL)は、データのプライバシを維持しながら協調的なモデルトレーニングを可能にする。
FLの既存の防御方法は、バックドアトリガーに対するモデルの過度な信頼性を無視するため、効果が限られている。
本稿では,FLにおけるバックドア攻撃を緩和する新しいフレームワークであるFedBAPを提案する。
- 参考スコア(独自算出の注目度): 9.79790722384987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) enables collaborative model training while preserving data privacy, but it is highly vulnerable to backdoor attacks. Most existing defense methods in FL have limited effectiveness due to their neglect of the model's over-reliance on backdoor triggers, particularly as the proportion of malicious clients increases. In this paper, we propose FedBAP, a novel defense framework for mitigating backdoor attacks in FL by reducing the model's reliance on backdoor triggers. Specifically, first, we propose a perturbed trigger generation mechanism that creates perturbation triggers precisely matching backdoor triggers in location and size, ensuring strong influence on model outputs. Second, we utilize these perturbation triggers to generate benign adversarial perturbations that disrupt the model's dependence on backdoor triggers while forcing it to learn more robust decision boundaries. Finally, we design an adaptive scaling mechanism to dynamically adjust perturbation intensity, effectively balancing defense strength and model performance. The experimental results demonstrate that FedBAP reduces the attack success rates by 0.22%-5.34%, 0.48%-6.34%, and 97.22%-97.6% under three types of backdoor attacks, respectively. In particular, FedBAP demonstrates outstanding performance against novel backdoor attacks.
- Abstract(参考訳): フェデレートラーニング(FL)は、データのプライバシを維持しながら協調的なモデルトレーニングを可能にするが、バックドア攻撃に対して非常に脆弱である。
FLの既存の防御方法は、特に悪意のあるクライアントの割合が増加するにつれて、バックドアトリガーに対するモデルの過度な依存を無視するため、効果が限られている。
本稿では,FLにおけるバックドア攻撃を緩和する新しい防御フレームワークであるFedBAPを提案する。
具体的には,まず,後方トリガの位置とサイズを正確に一致させ,モデル出力に強い影響を与える摂動トリガ生成機構を提案する。
第2に、これらの摂動トリガを使用して、モデルがバックドアトリガに依存することを妨げながら、より堅牢な決定境界を学習する良質な逆方向の摂動を生成する。
最後に,摂動強度を動的に調整し,防御強度とモデル性能を効果的にバランスさせる適応スケーリング機構を設計する。
実験の結果、FedBAPは3種類のバックドア攻撃でそれぞれ0.22%-5.34%、0.48%-6.34%、97.22%-97.6%の攻撃成功率を減少させることが示された。
特に、FedBAPは、新しいバックドア攻撃に対する優れたパフォーマンスを示している。
関連論文リスト
- Coward: Toward Practical Proactive Federated Backdoor Defense via Collision-based Watermark [90.94234374893287]
我々は、マルチバックドア衝突効果の発見に触発されて、Cowardと呼ばれる新しいプロアクティブディフェンスを導入する。
一般に,サーバから注入された,矛盾するグローバルな透かしが,保持されるのではなく,ローカルトレーニング中に消去されるかどうかを評価することで攻撃者を検出する。
論文 参考訳(メタデータ) (2025-08-04T06:51:33Z) - An Effective and Resilient Backdoor Attack Framework against Deep Neural Networks and Vision Transformers [22.77836113915616]
本稿では,最適なトリガ形状と位置を探索する,注目に基づく新しいマスク生成手法を提案する。
また、損失関数にQuality-of-Experienceという用語を導入し、トリガの透明性値を慎重に調整する。
提案したバックドア攻撃フレームワークは,最先端のバックドア防御に対する堅牢性を示す。
論文 参考訳(メタデータ) (2024-12-09T02:03:27Z) - DeTrigger: A Gradient-Centric Approach to Backdoor Attack Mitigation in Federated Learning [8.745529957589039]
Federated Learning(FL)は、ローカルデータのプライバシを保持しながら、分散デバイス間の協調的なモデルトレーニングを可能にする。
しかし、FLの分散された性質は、特にバックドアアタックをモデル化するための脆弱性も開放する。
DeTriggerは、スケーラブルで効率的なバックドアロバストなフェデレーション学習フレームワークである。
論文 参考訳(メタデータ) (2024-11-19T04:12:14Z) - Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models [57.5404308854535]
大型言語モデル(LLM)における安全バックドア攻撃は、正常な相互作用中の検出を回避しながら、安全でない振る舞いをステルス的に引き起こすことができる。
モデル埋め込み空間において,バックドアトリガーが比較的均一なドリフトを引き起こすという知見を活かした緩和手法であるBEEARを提案する。
両レベル最適化手法は、不要な振る舞いを誘発する普遍的な埋め込み摂動を特定し、モデルパラメータを調整し、これらの摂動に対する安全な振舞いを強化する。
論文 参考訳(メタデータ) (2024-06-24T19:29:47Z) - Concealing Backdoor Model Updates in Federated Learning by Trigger-Optimized Data Poisoning [20.69655306650485]
Federated Learning(FL)は、参加者がプライベートデータを共有せずに、協力的にモデルをトレーニングできる分散型機械学習手法である。
プライバシーとスケーラビリティの利点にもかかわらず、FLはバックドア攻撃の影響を受けやすい。
本稿では,バックドアトリガの最適化によりバックドア目標を動的に構築する,FLのバックドア攻撃戦略であるDPOTを提案する。
論文 参考訳(メタデータ) (2024-05-10T02:44:25Z) - G$^2$uardFL: Safeguarding Federated Learning Against Backdoor Attacks
through Attributed Client Graph Clustering [116.4277292854053]
Federated Learning (FL)は、データ共有なしで協調的なモデルトレーニングを提供する。
FLはバックドア攻撃に弱いため、有害なモデル重みがシステムの整合性を損なう。
本稿では、悪意のあるクライアントの識別を属性グラフクラスタリング問題として再解釈する保護フレームワークであるG$2$uardFLを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:15:04Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - FedGrad: Mitigating Backdoor Attacks in Federated Learning Through Local
Ultimate Gradients Inspection [3.3711670942444014]
フェデレートラーニング(FL)は、複数のクライアントが機密データを妥協することなくモデルをトレーニングすることを可能にする。
FLの分散的な性質は、特に訓練中のバックドア挿入において、敵の攻撃に敏感である。
我々は,最先端のバックドア攻撃に抵抗するFLに対するバックドア耐性防御であるFedGradを提案する。
論文 参考訳(メタデータ) (2023-04-29T19:31:44Z) - Mitigating Backdoors in Federated Learning with FLD [7.908496863030483]
フェデレーション学習は、クライアントがプライバシー保護のために生データをアップロードすることなく、グローバルモデルを協調的にトレーニングすることを可能にする。
この機能は最近、バックドア攻撃に直面したフェデレーション学習の脆弱性の原因となっていることが判明した。
バックドア攻撃に対して効果的に防御する新しいモデルフィルタリング手法であるフェデレート層検出(FLD)を提案する。
論文 参考訳(メタデータ) (2023-03-01T07:54:54Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。