Exploring Adaptive Structure Learning for Heterophilic Graphs
- URL: http://arxiv.org/abs/2507.21191v1
- Date: Sun, 27 Jul 2025 19:43:31 GMT
- Title: Exploring Adaptive Structure Learning for Heterophilic Graphs
- Authors: Garv Kaushik,
- Abstract summary: Graph Convolutional Networks (GCNs) gained traction for graph representation learning, with recent attention on improving performance on heterophilic graphs.<n>We propose structure learning to rewire edges in shallow GCNs itself to avoid performance degradation in downstream discriminative tasks.<n>Our method is not generalizable across heterophilic graphs and performs inconsistently on node classification task contingent to the graph structure.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Convolutional Networks (GCNs) gained traction for graph representation learning, with recent attention on improving performance on heterophilic graphs for various real-world applications. The localized feature aggregation in a typical message-passing paradigm hinders the capturing of long-range dependencies between non-local nodes of the same class. The inherent connectivity structure in heterophilic graphs often conflicts with information sharing between distant nodes of same class. We propose structure learning to rewire edges in shallow GCNs itself to avoid performance degradation in downstream discriminative tasks due to oversmoothing. Parameterizing the adjacency matrix to learn connections between non-local nodes and extend the hop span of shallow GCNs facilitates the capturing of long-range dependencies. However, our method is not generalizable across heterophilic graphs and performs inconsistently on node classification task contingent to the graph structure.
Related papers
- GLANCE: Graph Logic Attention Network with Cluster Enhancement for Heterophilous Graph Representation Learning [54.60090631330295]
Graph Neural Networks (GNNs) have demonstrated significant success in learning from graph-structured data but often struggle on heterophilous graphs.<n>We propose GLANCE, a novel framework that integrates logic-guided reasoning, dynamic graph refinement, and adaptive clustering to enhance graph representation learning.
arXiv Detail & Related papers (2025-07-24T15:45:26Z) - Divergent Paths: Separating Homophilic and Heterophilic Learning for Enhanced Graph-level Representations [10.377829975823257]
Graph Convolutional Networks (GCNs) are predominantly tailored for graphs displaying homophily, where similar nodes connect, but often fail on heterophilic graphs.<n>Our research conducts an analysis on graphs with nodes' category ID available, distinguishing intra-category and inter-category components as embodiment of homophily and heterophily.<n>To alleviate this problem, we separately learn the intra- and inter-category parts by a combination of an intra-category convolution (IntraNet) and an inter-category high-pass graph convolution (InterNet)
arXiv Detail & Related papers (2025-04-06T09:31:10Z) - Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
In representation learning on graph-structured data, many popular graph neural networks (GNNs) fail to capture long-range dependencies.
This paper proposes a novel graph learning framework called the graph convolutional network with self-attention (GCN-SA)
The proposed scheme exhibits an exceptional generalization capability in node-level representation learning.
arXiv Detail & Related papers (2024-03-06T05:00:31Z) - GraphEdit: Large Language Models for Graph Structure Learning [14.16155596597421]
Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data.<n>Existing GSL methods heavily depend on explicit graph structural information as supervision signals.<n>We propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data.
arXiv Detail & Related papers (2024-02-23T08:29:42Z) - Redundancy-Free Self-Supervised Relational Learning for Graph Clustering [13.176413653235311]
We propose a novel self-supervised deep graph clustering method named Redundancy-Free Graph Clustering (R$2$FGC)
It extracts the attribute- and structure-level relational information from both global and local views based on an autoencoder and a graph autoencoder.
Our experiments are performed on widely used benchmark datasets to validate the superiority of our R$2$FGC over state-of-the-art baselines.
arXiv Detail & Related papers (2023-09-09T06:18:50Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - Graph Highway Networks [77.38665506495553]
Graph Convolution Networks (GCN) are widely used in learning graph representations due to their effectiveness and efficiency.
They suffer from the notorious over-smoothing problem, in which the learned representations converge to alike vectors when many layers are stacked.
We propose Graph Highway Networks (GHNet) which utilize gating units to balance the trade-off between homogeneity and heterogeneity in the GCN learning process.
arXiv Detail & Related papers (2020-04-09T16:26:43Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.