Divergent Paths: Separating Homophilic and Heterophilic Learning for Enhanced Graph-level Representations
- URL: http://arxiv.org/abs/2504.05344v1
- Date: Sun, 06 Apr 2025 09:31:10 GMT
- Title: Divergent Paths: Separating Homophilic and Heterophilic Learning for Enhanced Graph-level Representations
- Authors: Han Lei, Jiaxing Xu, Xia Dong, Yiping Ke,
- Abstract summary: Graph Convolutional Networks (GCNs) are predominantly tailored for graphs displaying homophily, where similar nodes connect, but often fail on heterophilic graphs.<n>Our research conducts an analysis on graphs with nodes' category ID available, distinguishing intra-category and inter-category components as embodiment of homophily and heterophily.<n>To alleviate this problem, we separately learn the intra- and inter-category parts by a combination of an intra-category convolution (IntraNet) and an inter-category high-pass graph convolution (InterNet)
- Score: 10.377829975823257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Networks (GCNs) are predominantly tailored for graphs displaying homophily, where similar nodes connect, but often fail on heterophilic graphs. The strategy of adopting distinct approaches to learn from homophilic and heterophilic components in node-level tasks has been widely discussed and proven effective both theoretically and experimentally. However, in graph-level tasks, research on this topic remains notably scarce. Addressing this gap, our research conducts an analysis on graphs with nodes' category ID available, distinguishing intra-category and inter-category components as embodiment of homophily and heterophily, respectively. We find while GCNs excel at extracting information within categories, they frequently capture noise from inter-category components. Consequently, it is crucial to employ distinct learning strategies for intra- and inter-category elements. To alleviate this problem, we separately learn the intra- and inter-category parts by a combination of an intra-category convolution (IntraNet) and an inter-category high-pass graph convolution (InterNet). Our IntraNet is supported by sophisticated graph preprocessing steps and a novel category-based graph readout function. For the InterNet, we utilize a high-pass filter to amplify the node disparities, enhancing the recognition of details in the high-frequency components. The proposed approach, DivGNN, combines the IntraNet and InterNet with a gated mechanism and substantially improves classification performance on graph-level tasks, surpassing traditional GNN baselines in effectiveness.
Related papers
- Graph Attention for Heterogeneous Graphs with Positional Encoding [0.0]
Graph Neural Networks (GNNs) have emerged as the de facto standard for modeling graph data.<n>This work benchmarks various GNN architectures to identify the most effective methods for heterogeneous graphs.<n>Our findings reveal that graph attention networks excel in these tasks.
arXiv Detail & Related papers (2025-04-03T18:00:02Z) - Cluster-based Graph Collaborative Filtering [55.929052969825825]
Graph Convolution Networks (GCNs) have succeeded in learning user and item representations for recommendation systems.
Most existing GCN-based methods overlook the multiple interests of users while performing high-order graph convolution.
We propose a novel GCN-based recommendation model, termed Cluster-based Graph Collaborative Filtering (ClusterGCF)
arXiv Detail & Related papers (2024-04-16T07:05:16Z) - Learn from Heterophily: Heterophilous Information-enhanced Graph Neural Network [4.078409998614025]
Heterophily, nodes with different labels tend to be connected based on semantic meanings, Graph Neural Networks (GNNs) often exhibit suboptimal performance.
We propose and demonstrate that the valuable semantic information inherent in heterophily can be utilized effectively in graph learning.
We propose HiGNN, an innovative approach that constructs an additional new graph structure, that integrates heterophilous information by leveraging node distribution.
arXiv Detail & Related papers (2024-03-26T03:29:42Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - The Map Equation Goes Neural: Mapping Network Flows with Graph Neural Networks [0.716879432974126]
Community detection is an essential tool for unsupervised data exploration and revealing the organisational structure of networked systems.<n>We consider the map equation, a popular information-theoretic objective function for unsupervised community detection, and express it in differentiable tensor form for gradient through descent.<n>Our formulation turns the map equation compatible with any neural network architecture, enables end-to-end learning, incorporates node features, and chooses the optimal number of clusters automatically.
arXiv Detail & Related papers (2023-10-02T12:32:18Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Incorporating Heterophily into Graph Neural Networks for Graph Classification [6.709862924279403]
Graph Neural Networks (GNNs) often assume strong homophily for graph classification, seldom considering heterophily.
We develop a novel GNN architecture called IHGNN (short for Incorporating Heterophily into Graph Neural Networks)
We empirically validate IHGNN on various graph datasets and demonstrate that it outperforms the state-of-the-art GNNs for graph classification.
arXiv Detail & Related papers (2022-03-15T06:48:35Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
We provide a comprehensive review of graph neural networks (GNNs) for heterophilic graphs.
Specifically, we propose a systematic taxonomy that essentially governs existing heterophilic GNN models.
We discuss the correlation between graph heterophily and various graph research domains, aiming to facilitate the development of more effective GNNs.
arXiv Detail & Related papers (2022-02-14T23:07:47Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks [67.25782890241496]
We propose a higher-order Attribute-Enhancing Graph Neural Network (HAEGNN) for heterogeneous network representation learning.
HAEGNN simultaneously incorporates meta-paths and meta-graphs for rich, heterogeneous semantics.
It shows superior performance against the state-of-the-art methods in node classification, node clustering, and visualization.
arXiv Detail & Related papers (2021-04-16T04:56:38Z) - Graph Clustering with Graph Neural Networks [5.305362965553278]
Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks.
Unsupervised problems on graphs, such as graph clustering, have proved more resistant to advances in GNNs.
We introduce Deep Modularity Networks (DMoN), an unsupervised pooling method inspired by the modularity measure of clustering quality.
arXiv Detail & Related papers (2020-06-30T15:30:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.