Advancing Compositional LLM Reasoning with Structured Task Relations in Interactive Multimodal Communications
- URL: http://arxiv.org/abs/2507.21199v1
- Date: Mon, 28 Jul 2025 09:33:12 GMT
- Title: Advancing Compositional LLM Reasoning with Structured Task Relations in Interactive Multimodal Communications
- Authors: Xinye Cao, Hongcan Guo, Guoshun Nan, Jiaoyang Cui, Haoting Qian, Yihan Lin, Yilin Peng, Diyang Zhang, Yanzhao Hou, Huici Wu, Xiaofeng Tao, Tony Q. S. Quek,
- Abstract summary: This paper presents a novel paradigm that accomplishes various IMAs using a single compositional LLM over wireless networks.<n>To tackle the first challenge, we propose ContextLoRA, a novel method that guides an LLM to learn the rich structured context among IMAs.<n>Experiments on three benchmarks show the superiority of the proposed ContextLoRA and ContextGear.
- Score: 42.945657927971
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interactive multimodal applications (IMAs), such as route planning in the Internet of Vehicles, enrich users' personalized experiences by integrating various forms of data over wireless networks. Recent advances in large language models (LLMs) utilize mixture-of-experts (MoE) mechanisms to empower multiple IMAs, with each LLM trained individually for a specific task that presents different business workflows. In contrast to existing approaches that rely on multiple LLMs for IMAs, this paper presents a novel paradigm that accomplishes various IMAs using a single compositional LLM over wireless networks. The two primary challenges include 1) guiding a single LLM to adapt to diverse IMA objectives and 2) ensuring the flexibility and efficiency of the LLM in resource-constrained mobile environments. To tackle the first challenge, we propose ContextLoRA, a novel method that guides an LLM to learn the rich structured context among IMAs by constructing a task dependency graph. We partition the learnable parameter matrix of neural layers for each IMA to facilitate LLM composition. Then, we develop a step-by-step fine-tuning procedure guided by task relations, including training, freezing, and masking phases. This allows the LLM to learn to reason among tasks for better adaptation, capturing the latent dependencies between tasks. For the second challenge, we introduce ContextGear, a scheduling strategy to optimize the training procedure of ContextLoRA, aiming to minimize computational and communication costs through a strategic grouping mechanism. Experiments on three benchmarks show the superiority of the proposed ContextLoRA and ContextGear. Furthermore, we prototype our proposed paradigm on a real-world wireless testbed, demonstrating its practical applicability for various IMAs. We will release our code to the community.
Related papers
- EMAC+: Embodied Multimodal Agent for Collaborative Planning with VLM+LLM [8.3321872381107]
We introduce EMAC+, an Embodied Multimodal Agent that collaboratively integrates LLM and VLM.<n>Unlike existing methods, EMAC+ dynamically refines high-level textual plans using real-time feedback from a VLM executing low-level visual control tasks.<n>EMAC+ achieves superior task performance, against noisy observations, and efficient learning.
arXiv Detail & Related papers (2025-05-26T12:34:16Z) - Distilling Transitional Pattern to Large Language Models for Multimodal Session-based Recommendation [67.84581846180458]
Session-based recommendation (SBR) predicts the next item based on anonymous sessions.<n>Recent Multimodal SBR methods utilize simplistic pre-trained models for modality learning but have limitations in semantic richness.<n>We propose a multimodal LLM-enhanced framework TPAD, which extends a distillation paradigm to decouple and align transitional patterns for promoting MSBR.
arXiv Detail & Related papers (2025-04-13T07:49:08Z) - Mixture of In-Context Experts Enhance LLMs' Long Context Awareness [51.65245442281049]
Large language models (LLMs) exhibit uneven awareness of different contextual positions.
We introduce a novel method called "Mixture of In-Context Experts" (MoICE) to address this challenge.
MoICE comprises two key components: a router integrated into each attention head within LLMs and a lightweight router-only training optimization strategy.
arXiv Detail & Related papers (2024-06-28T01:46:41Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
This paper proposes a practice-friendly LLM-enhanced paradigm with preference parsing (P2Rec) for sequential recommender systems (SRS)
Specifically, in the information reconstruction stage, we design a new user-level SFT task for collaborative information injection with the assistance of a pre-trained SRS model.
Our goal is to let LLM learn to reconstruct a corresponding prior preference distribution from each user's interaction sequence.
arXiv Detail & Related papers (2024-06-01T07:18:56Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [71.87790090964734]
Large Language Models (LLMs) have demonstrated exceptional proficiency in text understanding and embedding tasks.<n>Their potential in multimodal representation, particularly for item-to-item (I2I) recommendations, remains underexplored.<n>We propose an end-to-end fine-tuning method that customizes the integration of any existing LLMs and vision encoders for efficient multimodal representation.
arXiv Detail & Related papers (2024-05-27T03:24:01Z) - Sub-goal Distillation: A Method to Improve Small Language Agents [21.815417165548187]
Large Language Models (LLMs) have demonstrated significant promise as agents in interactive tasks.
We propose a method for transferring the performance of an LLM with billions of parameters to a much smaller language model.
In ScienceWorld, a challenging and multi-task interactive text environment, our method surpasses standard imitation learning based solely on elementary actions by 16.7%.
arXiv Detail & Related papers (2024-05-04T20:34:06Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVA is an innovative unifying multi-task framework that integrates pixel, regional, and global features to refine the perceptual faculties of MLLMs.
This work contributes a novel mask-based multi-task dataset comprising 277K samples, crafted to challenge and assess the fine-grained perception capabilities of MLLMs.
arXiv Detail & Related papers (2023-11-09T13:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.