Multiscale geometrical and topological learning in the analysis of soft matter collective dynamics
- URL: http://arxiv.org/abs/2507.21265v1
- Date: Mon, 28 Jul 2025 18:40:37 GMT
- Title: Multiscale geometrical and topological learning in the analysis of soft matter collective dynamics
- Authors: Tetiana Orlova, Amaranta Membrillo Solis, Hayley R. O. Sohn, Tristan Madeleine, Giampaolo D'Alessandro, Ivan I. Smalyukh, Malgosia Kaczmarek, Jacek Brodzki,
- Abstract summary: Joint geometric and topological data analysis (TDA) offers powerful framework for investigating such systems.<n>The method based on the analysis of fields generated from images of skyrmion ensembles offers insights into the nonlinear physical mechanisms of the system's response to external stimuli.
- Score: 0.4440432588828829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the behavior and evolution of a dynamical many-body system by analyzing patterns in their experimentally captured images is a promising method relevant for a variety of living and non-living self-assembled systems. The arrays of moving liquid crystal skyrmions studied here are a representative example of hierarchically organized materials that exhibit complex spatiotemporal dynamics driven by multiscale processes. Joint geometric and topological data analysis (TDA) offers a powerful framework for investigating such systems by capturing the underlying structure of the data at multiple scales. In the TDA approach, we introduce the $\Psi$-function, a robust numerical topological descriptor related to both the spatiotemporal changes in the size and shape of individual topological solitons and the emergence of regions with their different spatial organization. The geometric method based on the analysis of vector fields generated from images of skyrmion ensembles offers insights into the nonlinear physical mechanisms of the system's response to external stimuli and provides a basis for comparison with theoretical predictions. The methodology presented here is very general and can provide a characterization of system behavior both at the level of individual pattern-forming agents and as a whole, allowing one to relate the results of image data analysis to processes occurring in a physical, chemical, or biological system in the real world.
Related papers
- Geometry-aware Active Learning of Spatiotemporal Dynamic Systems [4.251030047034566]
This paper proposes a geometry-aware active learning framework for modeling dynamic systems.<n>We develop an adaptive active learning strategy to strategically identify spatial locations for data collection and further maximize the prediction accuracy.
arXiv Detail & Related papers (2025-04-26T19:56:38Z) - Automated Global Analysis of Experimental Dynamics through Low-Dimensional Linear Embeddings [3.825457221275617]
We introduce a data-driven computational framework to derive low-dimensional linear models for nonlinear dynamical systems.
This framework enables global stability analysis through interpretable linear models that capture the underlying system structure.
Our method offers a promising pathway to analyze complex dynamical behaviors across fields such as physics, climate science, and engineering.
arXiv Detail & Related papers (2024-11-01T19:27:47Z) - Deep Signature: Characterization of Large-Scale Molecular Dynamics [29.67824486345836]
Deep Signature is a novel computationally tractable framework that characterizes complex dynamics and interatomic interactions.<n>Our approach incorporates soft spectral clustering that locally aggregates cooperative dynamics to reduce the size of the system, as well as signature transform to provide a global characterization of the non-smooth interactive dynamics.
arXiv Detail & Related papers (2024-10-03T16:37:48Z) - Decomposing heterogeneous dynamical systems with graph neural networks [0.16492989697868887]
We show that graph neural networks can be designed to jointly learn the interaction rules and the structure of the heterogeneous system.
The learned latent structure and dynamics can be used to virtually decompose the complex system.
arXiv Detail & Related papers (2024-07-27T04:03:12Z) - Let's do the time-warp-attend: Learning topological invariants of dynamical systems [3.9735602856280132]
We propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries.
We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a range of applications.
Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.
arXiv Detail & Related papers (2023-12-14T18:57:16Z) - An Interventional Perspective on Identifiability in Gaussian LTI Systems
with Independent Component Analysis [44.892642197610215]
We show that in Gaussian Linear Time-Invariant (LTI) systems, the system parameters can be identified by introducing diverse intervention signals.
We show that Hidden Markov Models, in general, and (Gaussian) LTI systems, fulfil a generalization of the Causal de Finetti theorem with continuous parameters.
arXiv Detail & Related papers (2023-11-29T19:51:35Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
We introduce a novel neural systems model that integrates attractor dynamics with symbolic representations to model cognitive processes akin to the probabilistic language of thought (PLoT)
Our model segments the continuous representational space into discrete basins, with attractor states corresponding to symbolic sequences, that reflect the semanticity and compositionality characteristic of symbolic systems through unsupervised learning, rather than relying on pre-defined primitives.
This approach establishes a unified framework that integrates both symbolic and sub-symbolic processing through neural dynamics, a neuroplausible substrate with proven expressivity in AI, offering a more comprehensive model that mirrors the complex duality of cognitive operations
arXiv Detail & Related papers (2023-10-03T05:40:56Z) - Deep Learning-based Analysis of Basins of Attraction [49.812879456944984]
This research addresses the challenge of characterizing the complexity and unpredictability of basins within various dynamical systems.
The main focus is on demonstrating the efficiency of convolutional neural networks (CNNs) in this field.
arXiv Detail & Related papers (2023-09-27T15:41:12Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Interpretable statistical representations of neural population dynamics and geometry [4.459704414303749]
We introduce a representation learning method, MARBLE, that decomposes on-manifold dynamics into local flow fields and maps them into a common latent space.
In simulated non-linear dynamical systems, recurrent neural networks, and experimental single-neuron recordings from primates and rodents, we discover emergent low-dimensional latent representations.
These representations are consistent across neural networks and animals, enabling the robust comparison of cognitive computations.
arXiv Detail & Related papers (2023-04-06T21:11:04Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.