GLCP: Global-to-Local Connectivity Preservation for Tubular Structure Segmentation
- URL: http://arxiv.org/abs/2507.21328v1
- Date: Mon, 28 Jul 2025 20:49:45 GMT
- Title: GLCP: Global-to-Local Connectivity Preservation for Tubular Structure Segmentation
- Authors: Feixiang Zhou, Zhuangzhi Gao, He Zhao, Jianyang Xie, Yanda Meng, Yitian Zhao, Gregory Y. H. Lip, Yalin Zheng,
- Abstract summary: We propose a novel Global-to-Local Connectivity Preservation (GLCP) framework that can simultaneously perceive global and local structural characteristics.<n>In addition, we design a lightweight Dual-Attention-based Refinement (DAR) module to further improve segmentation quality.<n>Our GLCP achieves superior accuracy and continuity in tubular structure segmentation compared to several state-of-the-art approaches.
- Score: 16.961703984508457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate segmentation of tubular structures, such as vascular networks, plays a critical role in various medical domains. A remaining significant challenge in this task is structural fragmentation, which can adversely impact downstream applications. Existing methods primarily focus on designing various loss functions to constrain global topological structures. However, they often overlook local discontinuity regions, leading to suboptimal segmentation results. To overcome this limitation, we propose a novel Global-to-Local Connectivity Preservation (GLCP) framework that can simultaneously perceive global and local structural characteristics of tubular networks. Specifically, we propose an Interactive Multi-head Segmentation (IMS) module to jointly learn global segmentation, skeleton maps, and local discontinuity maps, respectively. This enables our model to explicitly target local discontinuity regions while maintaining global topological integrity. In addition, we design a lightweight Dual-Attention-based Refinement (DAR) module to further improve segmentation quality by refining the resulting segmentation maps. Extensive experiments on both 2D and 3D datasets demonstrate that our GLCP achieves superior accuracy and continuity in tubular structure segmentation compared to several state-of-the-art approaches. The source codes will be available at https://github.com/FeixiangZhou/GLCP.
Related papers
- LM-Net: A Light-weight and Multi-scale Network for Medical Image Segmentation [7.963884317408774]
Current medical image segmentation approaches have limitations in deeply exploring multi-scale information.<n>We propose a novel, lightweight, and multi-scale architecture (LM-Net) to enhance segmentation accuracy.<n>Our proposed model achieves state-of-the-art results, surpassing previous methods, while only requiring 4.66G FLOPs and 5.4M parameters.
arXiv Detail & Related papers (2025-01-07T14:47:15Z) - Dynamic Snake Convolution based on Topological Geometric Constraints for
Tubular Structure Segmentation [12.081234339680456]
We use this knowledge to guide our DSCNet to simultaneously enhance perception in three stages: feature extraction, feature fusion, and loss constraint.
Experiments on 2D and 3D datasets show that our DSCNet provides better accuracy and continuity on the tubular structure segmentation task compared with several methods.
arXiv Detail & Related papers (2023-07-17T10:55:58Z) - LCPFormer: Towards Effective 3D Point Cloud Analysis via Local Context
Propagation in Transformers [60.51925353387151]
We propose a novel module named Local Context Propagation (LCP) to exploit the message passing between neighboring local regions.
We use the overlap points of adjacent local regions as intermediaries, then re-weight the features of these shared points from different local regions before passing them to the next layers.
The proposed method is applicable to different tasks and outperforms various transformer-based methods in benchmarks including 3D shape classification and dense prediction tasks.
arXiv Detail & Related papers (2022-10-23T15:43:01Z) - SpatioTemporal Focus for Skeleton-based Action Recognition [66.8571926307011]
Graph convolutional networks (GCNs) are widely adopted in skeleton-based action recognition.
We argue that the performance of recent proposed skeleton-based action recognition methods is limited by the following factors.
Inspired by the recent attention mechanism, we propose a multi-grain contextual focus module, termed MCF, to capture the action associated relation information.
arXiv Detail & Related papers (2022-03-31T02:45:24Z) - Global Aggregation then Local Distribution for Scene Parsing [99.1095068574454]
We show that our approach can be modularized as an end-to-end trainable block and easily plugged into existing semantic segmentation networks.
Our approach allows us to build new state of the art on major semantic segmentation benchmarks including Cityscapes, ADE20K, Pascal Context, Camvid and COCO-stuff.
arXiv Detail & Related papers (2021-07-28T03:46:57Z) - A persistent homology-based topological loss for CNN-based multi-class
segmentation of CMR [5.898114915426535]
Multi-class segmentation of cardiac magnetic resonance (CMR) images seeks a separation of data into anatomical components with known structure and configuration.
Most popular CNN-based methods are optimised using pixel wise loss functions, ignorant of the spatially extended features that characterise anatomy.
We extend these approaches to the task of multi-class segmentation by building an enriched topological description of all class labels and class label pairs.
arXiv Detail & Related papers (2021-07-27T09:21:38Z) - Topology-Aware Segmentation Using Discrete Morse Theory [38.65353702366932]
We propose a new approach to train deep image segmentation networks for better topological accuracy.
We identify global structures, including 1D skeletons and 2D patches, which are important for topological accuracy.
On diverse datasets, our method achieves superior performance on both the DICE score and topological metrics.
arXiv Detail & Related papers (2021-03-18T02:47:21Z) - Unveiling the Potential of Structure-Preserving for Weakly Supervised
Object Localization [71.79436685992128]
We propose a two-stage approach, termed structure-preserving activation (SPA), towards fully leveraging the structure information incorporated in convolutional features for WSOL.
In the first stage, a restricted activation module (RAM) is designed to alleviate the structure-missing issue caused by the classification network.
In the second stage, we propose a post-process approach, termed self-correlation map generating (SCG) module to obtain structure-preserving localization maps.
arXiv Detail & Related papers (2021-03-08T03:04:14Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
We propose a PriorGuided Local (PGL) self-supervised model that learns the region-wise local consistency in the latent feature space.
Our PGL model learns the distinctive representations of local regions, and hence is able to retain structural information.
arXiv Detail & Related papers (2020-11-25T11:03:11Z) - clDice -- A Novel Topology-Preserving Loss Function for Tubular
Structure Segmentation [57.20783326661043]
We introduce a novel similarity measure termed centerlineDice (short clDice)
We theoretically prove that clDice guarantees topology preservation up to homotopy equivalence for binary 2D and 3D segmentation.
We benchmark the soft-clDice loss on five public datasets, including vessels, roads and neurons (2D and 3D)
arXiv Detail & Related papers (2020-03-16T16:27:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.