Group Relative Augmentation for Data Efficient Action Detection
- URL: http://arxiv.org/abs/2507.21353v1
- Date: Mon, 28 Jul 2025 21:46:05 GMT
- Title: Group Relative Augmentation for Data Efficient Action Detection
- Authors: Deep Anil Patel, Iain Melvin, Zachary Izzo, Martin Renqiang Min,
- Abstract summary: Adapting large Video-Language Models (VLMs) for action detection using only a few examples poses challenges.<n>We propose an efficient adaptation strategy combining parameter-efficient tuning (LoRA) with a novel learnable internal feature augmentation.<n>We demonstrate our method's effectiveness on complex multi-label, multi-person action detection datasets.
- Score: 11.169883977958454
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Adapting large Video-Language Models (VLMs) for action detection using only a few examples poses challenges like overfitting and the granularity mismatch between scene-level pre-training and required person-centric understanding. We propose an efficient adaptation strategy combining parameter-efficient tuning (LoRA) with a novel learnable internal feature augmentation. Applied within the frozen VLM backbone using FiLM, these augmentations generate diverse feature variations directly relevant to the task. Additionally, we introduce a group-weighted loss function that dynamically modulates the training contribution of each augmented sample based on its prediction divergence relative to the group average. This promotes robust learning by prioritizing informative yet reasonable augmentations. We demonstrate our method's effectiveness on complex multi-label, multi-person action detection datasets (AVA, MOMA), achieving strong mAP performance and showcasing significant data efficiency for adapting VLMs from limited examples.
Related papers
- A Scalable Pretraining Framework for Link Prediction with Efficient Adaptation [16.82426251068573]
Link Prediction (LP) is a critical task in graph machine learning.<n>Existing methods face key challenges including limited supervision from sparse connectivity.<n>We explore pretraining as a solution to address these challenges.
arXiv Detail & Related papers (2025-08-06T17:10:31Z) - PUMA: Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning [54.73049408950049]
We propose a Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning.<n>Our approach improves unified multimodal retrieval from both structural and learning perspectives.
arXiv Detail & Related papers (2025-07-10T16:47:25Z) - Scalable Multi-Stage Influence Function for Large Language Models via Eigenvalue-Corrected Kronecker-Factored Parameterization [31.379237532476875]
Pre-trained large language models (LLMs) are commonly fine-tuned to adapt to downstream tasks.<n>In this paper, we propose a multi-stage influence function to attribute predictions of fine-tuned LLMs to pre-training data.
arXiv Detail & Related papers (2025-05-08T07:43:44Z) - USDRL: Unified Skeleton-Based Dense Representation Learning with Multi-Grained Feature Decorrelation [24.90512145836643]
We introduce a Unified Skeleton-based Dense Representation Learning framework based on feature decorrelation.<n>We show that our approach significantly outperforms the current state-of-the-art (SOTA) approaches.
arXiv Detail & Related papers (2024-12-12T12:20:27Z) - On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
Multimodal learning is expected to boost model performance by integrating information from different modalities.
The widely-used joint training strategy leads to imbalanced and under-optimized uni-modal representations.
We propose On-the-fly Prediction Modulation (OPM) and On-the-fly Gradient Modulation (OGM) strategies to modulate the optimization of each modality.
arXiv Detail & Related papers (2024-10-15T13:15:50Z) - Achieving Byzantine-Resilient Federated Learning via Layer-Adaptive Sparsified Model Aggregation [7.200910949076064]
Federated Learning (FL) enables multiple clients to collaboratively train a model without sharing their local data.
Yet the FL system is vulnerable to well-designed Byzantine attacks, which aim to disrupt the model training process by uploading malicious model updates.
We propose the Layer-Adaptive Sparsified Model Aggregation (LASA) approach, which combines pre-aggregation sparsification with layer-wise adaptive aggregation to improve robustness.
arXiv Detail & Related papers (2024-09-02T19:28:35Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Aligning Data Selection with Performance: Performance-driven Reinforcement Learning for Active Learning in Object Detection [31.304039641225504]
This paper introduces Mean-AP Guided Reinforced Active Learning for Object Detection (MGRAL)<n>MGRAL is a novel approach that leverages the concept of expected model output changes as informativeness for deep detection networks.<n>Our approach demonstrates strong performance, establishing a new paradigm in reinforcement learning-based active learning for object detection.
arXiv Detail & Related papers (2023-10-12T14:59:22Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.