Achieving Byzantine-Resilient Federated Learning via Layer-Adaptive Sparsified Model Aggregation
- URL: http://arxiv.org/abs/2409.01435v1
- Date: Mon, 2 Sep 2024 19:28:35 GMT
- Title: Achieving Byzantine-Resilient Federated Learning via Layer-Adaptive Sparsified Model Aggregation
- Authors: Jiahao Xu, Zikai Zhang, Rui Hu,
- Abstract summary: Federated Learning (FL) enables multiple clients to collaboratively train a model without sharing their local data.
Yet the FL system is vulnerable to well-designed Byzantine attacks, which aim to disrupt the model training process by uploading malicious model updates.
We propose the Layer-Adaptive Sparsified Model Aggregation (LASA) approach, which combines pre-aggregation sparsification with layer-wise adaptive aggregation to improve robustness.
- Score: 7.200910949076064
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) enables multiple clients to collaboratively train a model without sharing their local data. Yet the FL system is vulnerable to well-designed Byzantine attacks, which aim to disrupt the model training process by uploading malicious model updates. Existing robust aggregation rule-based defense methods overlook the diversity of magnitude and direction across different layers of the model updates, resulting in limited robustness performance, particularly in non-IID settings. To address these challenges, we propose the Layer-Adaptive Sparsified Model Aggregation (LASA) approach, which combines pre-aggregation sparsification with layer-wise adaptive aggregation to improve robustness. Specifically, LASA includes a pre-aggregation sparsification module that sparsifies updates from each client before aggregation, reducing the impact of malicious parameters and minimizing the interference from less important parameters for the subsequent filtering process. Based on sparsified updates, a layer-wise adaptive filter then adaptively selects benign layers using both magnitude and direction metrics across all clients for aggregation. We provide the detailed theoretical robustness analysis of LASA and the resilience analysis for the FL integrated with LASA. Extensive experiments are conducted on various IID and non-IID datasets. The numerical results demonstrate the effectiveness of LASA. Code is available at \url{https://github.com/JiiahaoXU/LASA}.
Related papers
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
We propose an over-the-air fair federated learning algorithm (OTA-FFL) to train fair FL models.
Experiments demonstrate the superiority of OTA-FFL in achieving fairness and robust performance.
arXiv Detail & Related papers (2025-01-06T21:16:51Z) - FedECADO: A Dynamical System Model of Federated Learning [15.425099636035108]
Federated learning harnesses the power of distributed optimization to train a unified machine learning model across separate clients.
This work proposes FedECADO, a new algorithm inspired by a dynamical system representation of the federated learning process.
Compared to prominent techniques, including FedProx and FedNova, FedECADO achieves higher classification accuracies in numerous heterogeneous scenarios.
arXiv Detail & Related papers (2024-10-13T17:26:43Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - CRaSh: Clustering, Removing, and Sharing Enhance Fine-tuning without
Full Large Language Model [22.870512676002463]
This paper focuses on Offsite-Tuning (OFT), a representative technique that transfers transformer blocks between centralized LLMs and downstream emulators.
Inspired by these observations, we propose CRaSh, involving Clustering, Removing, and Sharing, a training-free strategy to derive improved emulators from LLMs.
Our findings demonstrate a linear connectivity among these optima falling over the same basin, thereby highlighting the effectiveness of CRaSh and OFT.
arXiv Detail & Related papers (2023-10-24T03:08:58Z) - Amortizing intractable inference in large language models [56.92471123778389]
We use amortized Bayesian inference to sample from intractable posterior distributions.
We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training.
As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem.
arXiv Detail & Related papers (2023-10-06T16:36:08Z) - FedDIP: Federated Learning with Extreme Dynamic Pruning and Incremental
Regularization [5.182014186927254]
Federated Learning (FL) has been successfully adopted for distributed training and inference of large-scale Deep Neural Networks (DNNs)
We contribute with a novel FL framework (coined FedDIP) which combines (i) dynamic model pruning with error feedback to eliminate redundant information exchange.
We provide convergence analysis of FedDIP and report on a comprehensive performance and comparative assessment against state-of-the-art methods.
arXiv Detail & Related papers (2023-09-13T08:51:19Z) - NeFL: Nested Model Scaling for Federated Learning with System Heterogeneous Clients [44.89061671579694]
Federated learning (FL) enables distributed training while preserving data privacy, but stragglers-slow or incapable clients-can significantly slow down the total training time and degrade performance.
We propose nested federated learning (NeFL), a framework that efficiently divides deep neural networks into submodels using both depthwise and widthwise scaling.
NeFL achieves performance gain, especially for the worst-case submodel compared to baseline approaches.
arXiv Detail & Related papers (2023-08-15T13:29:14Z) - Layer-wise Adaptive Model Aggregation for Scalable Federated Learning [11.669431684184536]
In Federated Learning, a common approach for aggregating local models across clients is periodic averaging of the full model parameters.
We propose FedLAMA, a layer-wise model aggregation scheme for scalable Federated Learning.
arXiv Detail & Related papers (2021-10-19T22:49:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.