Graph-Augmented Large Language Model Agents: Current Progress and Future Prospects
- URL: http://arxiv.org/abs/2507.21407v1
- Date: Tue, 29 Jul 2025 00:27:12 GMT
- Title: Graph-Augmented Large Language Model Agents: Current Progress and Future Prospects
- Authors: Yixin Liu, Guibin Zhang, Kun Wang, Shiyuan Li, Shirui Pan,
- Abstract summary: Graph-augmented LLM Agents (GLA) enhance structure, continuity, and coordination in complex agent systems.<n>This paper offers a timely and comprehensive overview of recent advances and highlights key directions for future work.<n>We hope this paper can serve as a roadmap for future research on GLA and foster a deeper understanding of the role of graphs in GLA agent systems.
- Score: 53.24831948221361
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous agents based on large language models (LLMs) have demonstrated impressive capabilities in a wide range of applications, including web navigation, software development, and embodied control. While most LLMs are limited in several key agentic procedures, such as reliable planning, long-term memory, tool management, and multi-agent coordination, graphs can serve as a powerful auxiliary structure to enhance structure, continuity, and coordination in complex agent workflows. Given the rapid growth and fragmentation of research on Graph-augmented LLM Agents (GLA), this paper offers a timely and comprehensive overview of recent advances and also highlights key directions for future work. Specifically, we categorize existing GLA methods by their primary functions in LLM agent systems, including planning, memory, and tool usage, and then analyze how graphs and graph learning algorithms contribute to each. For multi-agent systems, we further discuss how GLA solutions facilitate the orchestration, efficiency optimization, and trustworthiness of MAS. Finally, we highlight key future directions to advance this field, from improving structural adaptability to enabling unified, scalable, and multimodal GLA systems. We hope this paper can serve as a roadmap for future research on GLA and foster a deeper understanding of the role of graphs in LLM agent systems.
Related papers
- Graphs Meet AI Agents: Taxonomy, Progress, and Future Opportunities [117.49715661395294]
Data structurization can play a promising role by transforming intricate and disorganized data into well-structured forms.<n>This survey presents a first systematic review of how graphs can empower AI agents.
arXiv Detail & Related papers (2025-06-22T12:59:12Z) - InstructRAG: Leveraging Retrieval-Augmented Generation on Instruction Graphs for LLM-Based Task Planning [6.75641900721385]
Large language models (LLMs) have enabled their use as agents for planning complex tasks.<n>Retrieval-augmented generation (RAG) offers new opportunities by leveraging external databases to ground generation in retrieved information.<n>We propose InstructRAG, a novel solution within a multi-agent meta-reinforcement learning framework to address these challenges.
arXiv Detail & Related papers (2025-04-17T15:41:39Z) - Exploring the Potential of Large Language Models as Predictors in Dynamic Text-Attributed Graphs [23.655368505970443]
We pioneer using large language models (LLMs) for predictive tasks on dynamic graphs.<n>We propose the GraphAgent-Dynamic (GAD) Framework, a multi-agent system that leverages collaborative LLMs.<n>GAD incorporates global and local summary agents to generate domain-specific knowledge, enhancing its transferability across domains.
arXiv Detail & Related papers (2025-03-05T08:28:11Z) - GraphAide: Advanced Graph-Assisted Query and Reasoning System [0.04999814847776096]
We introduce an advanced query and reasoning system, GraphAide, which constructs a knowledge graph (KG) from diverse sources and allows to query and reason over the resulting KG.
GraphAide harnesses Large Language Models (LLMs) to rapidly develop domain-specific digital assistants.
arXiv Detail & Related papers (2024-10-29T07:25:30Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
Graph generation requires large language models (LLMs) to generate graphs with given properties.
This paper explores the abilities of LLMs for graph generation with systematical task designs and experiments.
Our evaluations demonstrate that LLMs, particularly GPT-4, exhibit preliminary abilities in graph generation tasks.
arXiv Detail & Related papers (2024-03-21T12:37:54Z) - Language Agents as Optimizable Graphs [31.220547147952278]
We describe Large Language Models (LLMs)-based agents as computational graphs.
Our framework can be used to efficiently develop, integrate, and automatically improve various LLM agents.
arXiv Detail & Related papers (2024-02-26T18:48:27Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
Large language models (LLMs) have emerged as frontrunners, showcasing unparalleled prowess in diverse applications.
Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest.
This paper bifurcates such integrations into two predominant categories.
arXiv Detail & Related papers (2023-10-09T07:59:34Z) - A Versatile Graph Learning Approach through LLM-based Agent [33.37921145183175]
We propose to explore versatile graph learning approaches with LLM-based agents.
We develop several LLM-based agents equipped with diverse profiles, tools, functions and human experience.
By evaluating on diverse tasks and graphs, the correct results of the agent and its comparable performance showcase the versatility of the proposed method.
arXiv Detail & Related papers (2023-09-08T19:34:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.