A Versatile Graph Learning Approach through LLM-based Agent
- URL: http://arxiv.org/abs/2309.04565v2
- Date: Sun, 1 Sep 2024 13:12:34 GMT
- Title: A Versatile Graph Learning Approach through LLM-based Agent
- Authors: Lanning Wei, Huan Zhao, Xiaohan Zheng, Zhiqiang He, Quanming Yao,
- Abstract summary: We propose to explore versatile graph learning approaches with LLM-based agents.
We develop several LLM-based agents equipped with diverse profiles, tools, functions and human experience.
By evaluating on diverse tasks and graphs, the correct results of the agent and its comparable performance showcase the versatility of the proposed method.
- Score: 33.37921145183175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing versatile graph learning approaches is important, considering the diverse graphs and tasks existing in real-world applications. Existing methods have attempted to achieve this target through automated machine learning techniques, pre-training and fine-tuning strategies, and large language models. However, these methods are not versatile enough for graph learning, as they work on either limited types of graphs or a single task. In this paper, we propose to explore versatile graph learning approaches with LLM-based agents, and the key insight is customizing the graph learning procedures for diverse graphs and tasks. To achieve this, we develop several LLM-based agents, equipped with diverse profiles, tools, functions and human experience. They collaborate to configure each procedure with task and data-specific settings step by step towards versatile solutions, and the proposed method is dubbed GL-Agent. By evaluating on diverse tasks and graphs, the correct results of the agent and its comparable performance showcase the versatility of the proposed method, especially in complex scenarios.The low resource cost and the potential to use open-source LLMs highlight the efficiency of GL-Agent.
Related papers
- GraphRouter: A Graph-based Router for LLM Selections [13.463815950807874]
Graph is a graph-based approach for the contextual and adaptive selection of Large Language Models.
We show that Graph substantially surpasses existing routers, delivering a minimum performance improvement of 12.3%.
This work achieves a graph-based approach for the contextual and adaptive selection of LLMs, offering insights for real-world applications.
arXiv Detail & Related papers (2024-10-04T18:02:48Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
Large language model (LLM) agents have demonstrated impressive capabilities in utilizing external tools and knowledge to boost accuracy and hallucinations.
Here, we introduce AvaTaR, a novel and automated framework that optimize an LLM agent to effectively leverage provided tools, improving performance on a given task.
arXiv Detail & Related papers (2024-06-17T04:20:02Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
Graph generation requires large language models (LLMs) to generate graphs with given properties.
This paper explores the abilities of LLMs for graph generation with systematical task designs and experiments.
Our evaluations demonstrate that LLMs, particularly GPT-4, exhibit preliminary abilities in graph generation tasks.
arXiv Detail & Related papers (2024-03-21T12:37:54Z) - MuseGraph: Graph-oriented Instruction Tuning of Large Language Models
for Generic Graph Mining [41.19687587548107]
Graph Neural Networks (GNNs) need to be re-trained every time when applied to different graph tasks and datasets.
We propose a novel framework MuseGraph, which seamlessly integrates the strengths of GNNs and Large Language Models (LLMs)
Our experimental results demonstrate significant improvements in different graph tasks.
arXiv Detail & Related papers (2024-03-02T09:27:32Z) - Towards Versatile Graph Learning Approach: from the Perspective of Large
Language Models [40.58843080489752]
Large language models (LLMs) offer a potential solution due to the extensive knowledge and the human-like intelligence.
This paper proposes a novel conceptual prototype for designing versatile graph learning methods with LLMs.
arXiv Detail & Related papers (2024-02-18T16:43:21Z) - Can we Soft Prompt LLMs for Graph Learning Tasks? [22.286189757942054]
GraphPrompter is a framework designed to align graph information with Large Language Models (LLMs) via soft prompts.
The framework unveils the substantial capabilities of LLMs as predictors in graph-related tasks.
arXiv Detail & Related papers (2024-02-15T23:09:42Z) - All in One and One for All: A Simple yet Effective Method towards Cross-domain Graph Pretraining [18.955565096212183]
Large Language Models (LLMs) have revolutionized the fields of computer vision (CV) and natural language processing (NLP)
One of the most notable advancements of LLMs is that a single model is trained on vast and diverse datasets spanning multiple domains -- a paradigm we term All in One'
arXiv Detail & Related papers (2024-02-15T09:55:39Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
Large language models (LLMs) have emerged as frontrunners, showcasing unparalleled prowess in diverse applications.
Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest.
This paper bifurcates such integrations into two predominant categories.
arXiv Detail & Related papers (2023-10-09T07:59:34Z) - Meta Navigator: Search for a Good Adaptation Policy for Few-shot
Learning [113.05118113697111]
Few-shot learning aims to adapt knowledge learned from previous tasks to novel tasks with only a limited amount of labeled data.
Research literature on few-shot learning exhibits great diversity, while different algorithms often excel at different few-shot learning scenarios.
We present Meta Navigator, a framework that attempts to solve the limitation in few-shot learning by seeking a higher-level strategy.
arXiv Detail & Related papers (2021-09-13T07:20:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.