An LLM Driven Agent Framework for Automated Infrared Spectral Multi Task Reasoning
- URL: http://arxiv.org/abs/2507.21471v1
- Date: Tue, 29 Jul 2025 03:20:51 GMT
- Title: An LLM Driven Agent Framework for Automated Infrared Spectral Multi Task Reasoning
- Authors: Zujie Xie, Zixuan Chen, Jiheng Liang, Xiangyang Yu, Ziru Yu,
- Abstract summary: Large language models (LLMs) offer promising potential for complex scientific reasoning.<n>This study addresses the challenge of achieving accurate, automated infrared spectral interpretation under low-data conditions.<n>We introduce an end-to-end, large language model driven agent framework that integrates a structured literature knowledge base, automated spectral preprocessing, and multi task reasoning.
- Score: 4.934622388454071
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Infrared spectroscopy offers rapid, non destructive measurement of chemical and material properties but suffers from high dimensional, overlapping spectral bands that challenge conventional chemometric approaches. Emerging large language models (LLMs), with their capacity for generalization and reasoning, offer promising potential for automating complex scientific workflows. Despite this promise, their application in IR spectral analysis remains largely unexplored. This study addresses the critical challenge of achieving accurate, automated infrared spectral interpretation under low-data conditions using an LLM-driven framework. We introduce an end-to-end, large language model driven agent framework that integrates a structured literature knowledge base, automated spectral preprocessing, feature extraction, and multi task reasoning in a unified pipeline. By querying a curated corpus of peer reviewed IR publications, the agent selects scientifically validated routines. The selected methods transform each spectrum into low dimensional feature sets, which are fed into few shot prompt templates for classification, regression, and anomaly detection. A closed loop, multi turn protocol iteratively appends mispredicted samples to the prompt, enabling dynamic refinement of predictions. Across diverse materials: stamp pad ink, Chinese medicine, Pu'er tea, Citri Reticulatae Pericarpium and waste water COD datasets, the multi turn LLM consistently outperforms single turn inference, rivaling or exceeding machine learning and deep learning models under low data regimes.
Related papers
- An Auditable Agent Platform For Automated Molecular Optimisation [0.0]
Drug discovery frequently loses momentum when data, expertise, and tools are scattered.<n>To shorten this loop we built a hierarchical, tool using agent framework that automates molecular optimisation.
arXiv Detail & Related papers (2025-08-05T13:41:32Z) - ChemActor: Enhancing Automated Extraction of Chemical Synthesis Actions with LLM-Generated Data [53.78763789036172]
We present ChemActor, a fully fine-tuned large language model (LLM) as a chemical executor to convert between unstructured experimental procedures and structured action sequences.<n>This framework integrates a data selection module that selects data based on distribution divergence, with a general-purpose LLM, to generate machine-executable actions from a single molecule input.<n>Experiments on reaction-to-description (R2D) and description-to-action (D2A) tasks demonstrate that ChemActor achieves state-of-the-art performance, outperforming the baseline model by 10%.
arXiv Detail & Related papers (2025-06-30T05:11:19Z) - Reinforcing Question Answering Agents with Minimalist Policy Gradient Optimization [80.09112808413133]
Mujica is a planner that decomposes questions into acyclic graph of subquestions and a worker that resolves questions via retrieval and reasoning.<n>MyGO is a novel reinforcement learning method that replaces traditional policy updates with gradient Likelihood Maximum Estimation.<n> Empirical results across multiple datasets demonstrate the effectiveness of MujicaMyGO in enhancing multi-hop QA performance.
arXiv Detail & Related papers (2025-05-20T18:33:03Z) - DrugPilot: LLM-based Parameterized Reasoning Agent for Drug Discovery [54.79763887844838]
Large language models (LLMs) integrated with autonomous agents hold significant potential for advancing scientific discovery through automated reasoning and task execution.<n>We introduce DrugPilot, a LLM-based agent system with a parameterized reasoning architecture designed for end-to-end scientific in drug discovery.<n>DrugPilot significantly outperforms state-of-the-art agents such as ReAct and LoT, achieving task completion rates of 98.0%, 93.5%, and 64.0% for simple, multi-tool, and multi-turn scenarios, respectively.
arXiv Detail & Related papers (2025-05-20T05:18:15Z) - A Multimodal Multi-Agent Framework for Radiology Report Generation [2.1477122604204433]
Radiology report generation (RRG) aims to automatically produce diagnostic reports from medical images.<n>We propose a multimodal multi-agent framework for RRG that aligns with the stepwise clinical reasoning workflow.
arXiv Detail & Related papers (2025-05-14T20:28:04Z) - LLM Agent Swarm for Hypothesis-Driven Drug Discovery [2.7036595757881323]
PharmaSwarm is a unified multi-agent framework that orchestrates specialized "agents" to propose, validate, and refine hypotheses for novel drug targets and lead compounds.<n>By acting as an AI copilot, PharmaSwarm can accelerate translational research and deliver high-confidence hypotheses more efficiently than traditional pipelines.
arXiv Detail & Related papers (2025-04-24T22:27:50Z) - Artificial Intelligence in Spectroscopy: Advancing Chemistry from Prediction to Generation and Beyond [38.32974480709081]
The rapid advent of machine learning (ML) and artificial intelligence (AI) has catalyzed major transformations in chemistry.<n>The application of these methods to spectroscopic and spectrometric data, referred to as Spectroscopy Machine Learning (SpectraML), remains relatively underexplored.<n>We provide a unified review of SpectraML, systematically examining state-of-the-art approaches for both forward tasks and inverse tasks.
arXiv Detail & Related papers (2025-02-14T04:07:25Z) - Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries [51.72836644350993]
Multimodal Pretraining DEL-Fusion model (MPDF)
We develop pretraining tasks applying contrastive objectives between different compound representations and their text descriptions.
We propose a novel DEL-fusion framework that amalgamates compound information at the atomic, submolecular, and molecular levels.
arXiv Detail & Related papers (2024-09-07T17:32:21Z) - ChemMiner: A Large Language Model Agent System for Chemical Literature Data Mining [56.15126714863963]
ChemMiner is an end-to-end framework for extracting chemical data from literature.<n>ChemMiner incorporates three specialized agents: a text analysis agent for coreference mapping, a multimodal agent for non-textual information extraction, and a synthesis analysis agent for data generation.<n> Experimental results demonstrate reaction identification rates comparable to human chemists while significantly reducing processing time, with high accuracy, recall, and F1 scores.
arXiv Detail & Related papers (2024-02-20T13:21:46Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.