UnsafeChain: Enhancing Reasoning Model Safety via Hard Cases
- URL: http://arxiv.org/abs/2507.21652v1
- Date: Tue, 29 Jul 2025 10:08:52 GMT
- Title: UnsafeChain: Enhancing Reasoning Model Safety via Hard Cases
- Authors: Raj Vardhan Tomar, Preslav Nakov, Yuxia Wang,
- Abstract summary: We release UnsafeChain, a safety alignment dataset constructed from hard prompts with diverse sources.<n>We fine-tune three large reasoning models (LRMs) and compare them against recent SafeChain and STAR-1.<n>UnsafeChain consistently outperforms prior datasets, with even a 1K subset matching or surpassing baseline performance.
- Score: 33.50554956301584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large reasoning models (LRMs) grow more capable, chain-of-thought (CoT) reasoning introduces new safety challenges. Existing SFT-based safety alignment studies dominantly focused on filtering prompts with safe, high-quality responses, while overlooking hard prompts that always elicit harmful outputs. To fill this gap, we introduce UnsafeChain, a safety alignment dataset constructed from hard prompts with diverse sources, where unsafe completions are identified and explicitly corrected into safe responses. By exposing models to unsafe behaviors and guiding their correction, UnsafeChain enhances safety while preserving general reasoning ability. We fine-tune three LRMs on UnsafeChain and compare them against recent SafeChain and STAR-1 across six out-of-distribution and five in-distribution benchmarks. UnsafeChain consistently outperforms prior datasets, with even a 1K subset matching or surpassing baseline performance, demonstrating the effectiveness and generalizability of correction-based supervision. We release our dataset and code at https://github.com/mbzuai-nlp/UnsafeChain
Related papers
- HoliSafe: Holistic Safety Benchmarking and Modeling with Safety Meta Token for Vision-Language Model [52.72318433518926]
Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content.<n>We introduce a holistic safety dataset and benchmark, HoliSafe, that spans all five safe/unsafe image-text combinations.<n>We propose SafeLLaVA, a novel VLM augmented with a learnable safety meta token and a dedicated safety head.
arXiv Detail & Related papers (2025-06-05T07:26:34Z) - Shape it Up! Restoring LLM Safety during Finetuning [66.46166656543761]
Finetuning large language models (LLMs) enables user-specific customization but introduces critical safety risks.<n>We propose dynamic safety shaping (DSS), a framework that uses fine-grained safety signals to reinforce learning from safe segments of a response while suppressing unsafe content.<n>We present STAR-DSS, guided by STAR scores, that robustly mitigates finetuning risks and delivers substantial safety improvements across diverse threats, datasets, and model families.
arXiv Detail & Related papers (2025-05-22T18:05:16Z) - SafeKey: Amplifying Aha-Moment Insights for Safety Reasoning [76.56522719330911]
Large Reasoning Models (LRMs) introduce a new generation paradigm of explicitly reasoning before answering.<n>LRMs pose great safety risks against harmful queries and adversarial attacks.<n>We propose SafeKey to better activate the safety aha moment in the key sentence.
arXiv Detail & Related papers (2025-05-22T03:46:03Z) - How Should We Enhance the Safety of Large Reasoning Models: An Empirical Study [90.34190170330481]
Large Reasoning Models (LRMs) have achieved remarkable success on reasoning-intensive tasks such as mathematics and programming.<n>However, their enhanced reasoning capabilities do not necessarily translate to improved safety performance.<n>We present a comprehensive empirical study on how to enhance the safety of LRMs through Supervised Fine-Tuning.
arXiv Detail & Related papers (2025-05-21T11:45:29Z) - Safe Vision-Language Models via Unsafe Weights Manipulation [75.04426753720551]
We revise safety evaluation by introducing Safe-Ground, a new set of metrics that evaluate safety at different levels of granularity.<n>We take a different direction and explore whether it is possible to make a model safer without training, introducing Unsafe Weights Manipulation (UWM)<n>UWM uses a calibration set of safe and unsafe instances to compare activations between safe and unsafe content, identifying the most important parameters for processing the latter.
arXiv Detail & Related papers (2025-03-14T17:00:22Z) - SafeChain: Safety of Language Models with Long Chain-of-Thought Reasoning Capabilities [21.317245896641136]
Long chain-of-thought (CoT) reasoning generates structured intermediate steps, enhancing reasoning capabilities.<n>Current research on large language model (LLM) safety usually focuses on short-answer responses, overlooking the long CoT style outputs of LRMs.
arXiv Detail & Related papers (2025-02-17T16:57:56Z) - STAIR: Improving Safety Alignment with Introspective Reasoning [44.780098674618614]
We propose STAIR, a framework that integrates SafeTy Alignment with Itrospective Reasoning.<n>We show that STAIR effectively mitigates harmful outputs while better preserving helpfulness, compared to instinctive alignment strategies.<n>With test-time scaling, STAIR achieves a safety performance comparable to Claude-3.5 against popular jailbreak attacks.
arXiv Detail & Related papers (2025-02-04T15:02:55Z) - Separate the Wheat from the Chaff: A Post-Hoc Approach to Safety Re-Alignment for Fine-Tuned Language Models [30.93821289892195]
We propose IRR (Identify, Remove, and Recalibrate for Safety Realignment) that performs safety realignment for LLMs.<n>The core of IRR is to identify and remove unsafe delta parameters from the fine-tuned models, while recalibrating the retained ones.<n>Our results demonstrate that IRR significantly enhances the safety performance of fine-tuned models on safety benchmarks, such as harmful queries and jailbreak attacks.
arXiv Detail & Related papers (2024-12-15T03:58:38Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position.<n>DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful response sequence.
arXiv Detail & Related papers (2024-07-12T09:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.