MAGE: Multimodal Alignment and Generation Enhancement via Bridging Visual and Semantic Spaces
- URL: http://arxiv.org/abs/2507.21741v1
- Date: Tue, 29 Jul 2025 12:17:46 GMT
- Title: MAGE: Multimodal Alignment and Generation Enhancement via Bridging Visual and Semantic Spaces
- Authors: Shaojun E, Yuchen Yang, Jiaheng Wu, Yan Zhang, Tiejun Zhao, Ziyan Chen,
- Abstract summary: MAGE is a novel framework that bridges the semantic spaces of vision and text through an innovative alignment mechanism.<n>We employ a training strategy that combines cross-entropy and mean squared error, significantly enhancing the alignment effect.<n>Our proposed multimodal large model architecture, MAGE, achieved significantly better performance compared to similar works across various evaluation benchmarks.
- Score: 23.447713697204225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the latest advancements in multimodal learning, effectively addressing the spatial and semantic losses of visual data after encoding remains a critical challenge. This is because the performance of large multimodal models is positively correlated with the coupling between visual encoders and large language models. Existing approaches often face issues such as vector gaps or semantic disparities, resulting in information loss during the propagation process. To address these issues, we propose MAGE (Multimodal Alignment and Generation Enhancement), a novel framework that bridges the semantic spaces of vision and text through an innovative alignment mechanism. By introducing the Intelligent Alignment Network (IAN), MAGE achieves dimensional and semantic alignment. To reduce the gap between synonymous heterogeneous data, we employ a training strategy that combines cross-entropy and mean squared error, significantly enhancing the alignment effect. Moreover, to enhance MAGE's "Any-to-Any" capability, we developed a fine-tuning dataset for multimodal tool-calling instructions to expand the model's output capability boundaries. Finally, our proposed multimodal large model architecture, MAGE, achieved significantly better performance compared to similar works across various evaluation benchmarks, including MME, MMBench, and SEED. Complete code and appendix are available at: https://github.com/GTCOM-NLP/MAGE.
Related papers
- MGCR-Net:Multimodal Graph-Conditioned Vision-Language Reconstruction Network for Remote Sensing Change Detection [55.702662643521265]
We propose the multimodal graph-conditioned vision-language reconstruction network (MGCR-Net) to explore the semantic interaction capabilities of multimodal data.<n> Experimental results on four public datasets demonstrate that MGCR achieves superior performance compared to mainstream CD methods.
arXiv Detail & Related papers (2025-08-03T02:50:08Z) - MoCa: Modality-aware Continual Pre-training Makes Better Bidirectional Multimodal Embeddings [75.0617088717528]
MoCa is a framework for transforming pre-trained VLM backbones into effective bidirectional embedding models.<n>MoCa consistently improves performance across MMEB and ViDoRe-v2 benchmarks, achieving new state-of-the-art results.
arXiv Detail & Related papers (2025-06-29T06:41:00Z) - Multimodal-Aware Fusion Network for Referring Remote Sensing Image Segmentation [7.992331117310217]
Referring remote sensing image segmentation (RRSIS) is a novel visual task in remote sensing images segmentation.<n>We design a multimodal-aware fusion network (MAFN) to achieve fine-grained alignment and fusion between the two modalities.
arXiv Detail & Related papers (2025-03-14T08:31:21Z) - ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VL is an efficient vision-language method that tunes models based on pretrained large language models.
Our framework surpasses existing methods by an average accuracy of 0.77% on ScienceQA dataset.
arXiv Detail & Related papers (2024-10-23T11:31:06Z) - EMMA: Empowering Multi-modal Mamba with Structural and Hierarchical Alignment [39.870809905905325]
We propose Empowering Multi-modal Mamba with Structural and Hierarchical Alignment (EMMA) to extract fine-grained visual information.
Our model shows lower latency than other Mamba-based MLLMs and is nearly four times faster than transformer-based MLLMs of similar scale during inference.
arXiv Detail & Related papers (2024-10-08T11:41:55Z) - MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model [49.931663904599205]
MaVEn is an innovative framework designed to enhance the capabilities of Multimodal Large Language Models (MLLMs) in multi-image reasoning.
We show that MaVEn significantly enhances MLLMs' understanding in complex multi-image scenarios, while also improving performance in single-image contexts.
arXiv Detail & Related papers (2024-08-22T11:57:16Z) - HiVG: Hierarchical Multimodal Fine-grained Modulation for Visual Grounding [80.85164509232261]
HiVG consists of a multi-layer adaptive cross-modal bridge and a hierarchical multimodal low-rank adaptation (HiLoRA) paradigm.
HiLoRA prevents the accumulation of perceptual errors by adapting the cross-modal features from shallow to deep layers in a hierarchical manner.
arXiv Detail & Related papers (2024-04-20T14:57:31Z) - Multi-modal Semantic Understanding with Contrastive Cross-modal Feature
Alignment [11.897888221717245]
This paper proposes a novel CLIP-guided contrastive-learning-based architecture to perform multi-modal feature alignment.
Our model is simple to implement without using task-specific external knowledge, and thus can easily migrate to other multi-modal tasks.
arXiv Detail & Related papers (2024-03-11T01:07:36Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Mitigating Modality Collapse in Multimodal VAEs via Impartial
Optimization [7.4262579052708535]
We argue that this effect is a consequence of conflicting gradients during multimodal VAE training.
We show how to detect the sub-graphs in the computational graphs where gradients conflict.
We empirically show that our framework significantly improves the reconstruction performance, conditional generation, and coherence of the latent space across modalities.
arXiv Detail & Related papers (2022-06-09T13:29:25Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUG is a new vision-language foundation model for both cross-modal understanding and generation.
It achieves state-of-the-art results on a wide range of vision-language downstream tasks, such as image captioning, image-text retrieval, visual grounding and visual question answering.
arXiv Detail & Related papers (2022-05-24T11:52:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.