Few-Shot Vision-Language Reasoning for Satellite Imagery via Verifiable Rewards
- URL: http://arxiv.org/abs/2507.21745v2
- Date: Thu, 07 Aug 2025 14:40:08 GMT
- Title: Few-Shot Vision-Language Reasoning for Satellite Imagery via Verifiable Rewards
- Authors: Aybora Koksal, A. Aydin Alatan,
- Abstract summary: We present the first few-shot reinforcement learning with verifiable reward (RLVR) framework for satellite imagery.<n>We employ policy-gradient optimization with as few as one curated example to align model outputs for satellite reasoning tasks.<n> scaling to 128 examples matches or exceeds models trained on thousands of annotated samples.
- Score: 7.14978158285611
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large language and vision-language models have enabled strong reasoning capabilities, yet they remain impractical for specialized domains like remote sensing, where annotated data is scarce and expensive. We present the first few-shot reinforcement learning with verifiable reward (RLVR) framework for satellite imagery that eliminates the need for caption supervision--relying solely on lightweight, rule-based binary or IoU-based rewards. Adapting the "1-shot RLVR" paradigm from language models to vision-language models, we employ policy-gradient optimization with as few as one curated example to align model outputs for satellite reasoning tasks. Comprehensive experiments across multiple remote sensing benchmarks--including classification, visual question answering, and grounding--show that even a single example yields substantial improvements over the base model. Scaling to 128 examples matches or exceeds models trained on thousands of annotated samples. While the extreme one-shot setting can induce mild, task-specific overfitting, our approach consistently demonstrates robust generalization and efficiency across diverse tasks. Further, we find that prompt design and loss weighting significantly influence training stability and final accuracy. Our method enables cost-effective and data-efficient development of domain-specialist vision-language reasoning models, offering a pragmatic recipe for data-scarce fields: start from a compact VLM, curate a handful of reward-checkable cases, and train via RLVR.
Related papers
- Prompt Tuning Vision Language Models with Margin Regularizer for Few-Shot Learning under Distribution Shifts [13.21626568246313]
We analyze whether vision-language foundation models can be adapted to target datasets with very different distributions and classes.<n>We propose a novel prompt-tuning method, PromptMargin, for adapting such large-scale VLMs directly on the few target samples.<n>PromptMargin effectively tunes the text as well as visual prompts for this task, and has two main modules.
arXiv Detail & Related papers (2025-05-21T13:26:56Z) - Top-Down Compression: Revisit Efficient Vision Token Projection for Visual Instruction Tuning [70.57180215148125]
Visual instruction tuning aims to enable large language models to comprehend the visual world.<n>Existing methods often grapple with the intractable trade-off between accuracy and efficiency.<n>We present LLaVA-Meteor, a novel approach that strategically compresses visual tokens without compromising core information.
arXiv Detail & Related papers (2025-05-17T10:22:29Z) - OpenVLThinker: Complex Vision-Language Reasoning via Iterative SFT-RL Cycles [91.88062410741833]
We introduce OpenVLThinker, one of the first open-source large vision-language models (LVLMs) to exhibit sophisticated chain-of-thought reasoning.<n>We show that OpenVLThinker-7B consistently advances performance across six benchmarks demanding mathematical and general reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - EfficientLLaVA:Generalizable Auto-Pruning for Large Vision-language Models [64.18350535770357]
We propose an automatic pruning method for large vision-language models to enhance the efficiency of multimodal reasoning.<n>Our approach only leverages a small number of samples to search for the desired pruning policy.<n>We conduct extensive experiments on the ScienceQA, Vizwiz, MM-vet, and LLaVA-Bench datasets for the task of visual question answering.
arXiv Detail & Related papers (2025-03-19T16:07:04Z) - SPARC: Score Prompting and Adaptive Fusion for Zero-Shot Multi-Label Recognition in Vision-Language Models [74.40683913645731]
Zero-shot multi-label recognition (MLR) with Vision-Language Models (VLMs) faces significant challenges without training data, model tuning, or architectural modifications.<n>Our work proposes a novel solution treating VLMs as black boxes, leveraging scores without training data or ground truth.<n>Analysis of these prompt scores reveals VLM biases and AND''/OR' signal ambiguities, notably that maximum scores are surprisingly suboptimal compared to second-highest scores.
arXiv Detail & Related papers (2025-02-24T07:15:05Z) - Pushing the Limits of Vision-Language Models in Remote Sensing without Human Annotations [5.065947993017157]
This study introduces an approach to curate vision-language datasets by employing an image decoding machine learning model.
We amassed approximately 9.6 million vision-language paired datasets in VHR imagery.
The resultant model outperformed counterparts that did not leverage publicly available vision-language datasets.
arXiv Detail & Related papers (2024-09-11T06:36:08Z) - Efficient and Versatile Robust Fine-Tuning of Zero-shot Models [34.27380518351181]
We introduce Robust Adapter (R-Adapter), a novel method for fine-tuning zero-shot models to downstream tasks.
Our method integrates lightweight modules into the pre-trained model and employs novel self-ensemble techniques to boost OOD robustness and reduce storage expenses substantially.
Our experiments demonstrate that R-Adapter achieves state-of-the-art performance across a diverse set of tasks, tuning only 13% of the parameters of the CLIP encoders.
arXiv Detail & Related papers (2024-08-11T11:37:43Z) - Calibrated Self-Rewarding Vision Language Models [27.686545023186852]
Large Vision-Language Models (LVLMs) have made substantial progress by integrating pre-trained large language models (LLMs) and vision models through instruction tuning.
LVLMs often exhibit the hallucination phenomenon, where generated text responses appear linguistically plausible but contradict the input image.
We propose the Calibrated Self-Rewarding (CSR) approach, which enables the model to self-improve by iteratively generating candidate responses, evaluating the reward for each response, and curating preference data for fine-tuning.
arXiv Detail & Related papers (2024-05-23T14:30:33Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - Revisiting Few-Shot Object Detection with Vision-Language Models [49.79495118650838]
We revisit the task of few-shot object detection (FSOD) in the context of recent foundational vision-language models (VLMs)
We propose Foundational FSOD, a new benchmark protocol that evaluates detectors pre-trained on any external data.
We discuss our recent CVPR 2024 Foundational FSOD competition and share insights from the community.
arXiv Detail & Related papers (2023-12-22T07:42:00Z) - POUF: Prompt-oriented unsupervised fine-tuning for large pre-trained
models [62.23255433487586]
We propose an unsupervised fine-tuning framework to fine-tune the model or prompt on the unlabeled target data.
We demonstrate how to apply our method to both language-augmented vision and masked-language models by aligning the discrete distributions extracted from the prompts and target data.
arXiv Detail & Related papers (2023-04-29T22:05:22Z) - Multimodal Knowledge Alignment with Reinforcement Learning [103.68816413817372]
ESPER extends language-only zero-shot models to unseen multimodal tasks, like image and audio captioning.
Our key novelty is to use reinforcement learning to align multimodal inputs to language model generations without direct supervision.
Experiments demonstrate that ESPER outperforms baselines and prior work on a variety of zero-shot tasks.
arXiv Detail & Related papers (2022-05-25T10:12:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.