Hybrid Causal Identification and Causal Mechanism Clustering
- URL: http://arxiv.org/abs/2507.21792v1
- Date: Tue, 29 Jul 2025 13:27:15 GMT
- Title: Hybrid Causal Identification and Causal Mechanism Clustering
- Authors: Saixiong Liu, Yuhua Qian, Jue Li, Honghong Cheng, Feijiang Li,
- Abstract summary: This paper proposes a Mixture Variational Conditional Causal Inference model (MCVCI) to infer heterogeneous causality.<n>According to the identifiability of the Hybrid Additive Noise Model (HANM), MCVCI combines the superior fitting capabilities of the Gaussian mixture model and the neural network.
- Score: 14.706998903419407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bivariate causal direction identification is a fundamental and vital problem in the causal inference field. Among binary causal methods, most methods based on additive noise only use one single causal mechanism to construct a causal model. In the real world, observations are always collected in different environments with heterogeneous causal relationships. Therefore, on observation data, this paper proposes a Mixture Conditional Variational Causal Inference model (MCVCI) to infer heterogeneous causality. Specifically, according to the identifiability of the Hybrid Additive Noise Model (HANM), MCVCI combines the superior fitting capabilities of the Gaussian mixture model and the neural network and elegantly uses the likelihoods obtained from the probabilistic bounds of the mixture conditional variational auto-encoder as causal decision criteria. Moreover, we model the casual heterogeneity into cluster numbers and propose the Mixture Conditional Variational Causal Clustering (MCVCC) method, which can reveal causal mechanism expression. Compared with state-of-the-art methods, the comprehensive best performance demonstrates the effectiveness of the methods proposed in this paper on several simulated and real data.
Related papers
- Unlasting: Unpaired Single-Cell Multi-Perturbation Estimation by Dual Conditional Diffusion Implicit Bridges [68.98973318553983]
We propose a framework based on Dual Diffusion Implicit Bridges (DDIB) to learn the mapping between different data distributions.<n>We integrate gene regulatory network (GRN) information to propagate perturbation signals in a biologically meaningful way.<n>We also incorporate a masking mechanism to predict silent genes, improving the quality of generated profiles.
arXiv Detail & Related papers (2025-06-26T09:05:38Z) - Identifiable Multi-View Causal Discovery Without Non-Gaussianity [63.217175519436125]
We propose a novel approach to linear causal discovery in the framework of multi-view Structural Equation Models (SEM)<n>We prove the identifiability of all the parameters of the model without any further assumptions on the structure of the SEM other than it being acyclic.<n>The proposed methodology is validated through simulations and application on real data, where it enables the estimation of causal graphs between brain regions.
arXiv Detail & Related papers (2025-02-27T14:06:14Z) - Detection of Unobserved Common Causes based on NML Code in Discrete,
Mixed, and Continuous Variables [1.5039745292757667]
We categorize all possible causal relationships between two random variables into the following four categories.
We show that CLOUD is more effective than existing methods in inferring causal relationships by extensive experiments on both synthetic and real-world data.
arXiv Detail & Related papers (2024-03-11T08:11:52Z) - Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders [16.682775063684907]
We study the use of uncertainty in causal inference over all causal models.<n>We decompose structure marginalisation into the marginalisation over (i) causal orders and (ii) directed acyclic graphs (DAGs) given an order.<n>Our method outperforms state-of-the-art in structure learning on simulated non-linear additive noise benchmarks.
arXiv Detail & Related papers (2024-02-22T18:39:24Z) - Effective Causal Discovery under Identifiable Heteroscedastic Noise Model [45.98718860540588]
Causal DAG learning has recently achieved promising performance in terms of both accuracy and efficiency.
We propose a novel formulation for DAG learning that accounts for the variation in noise variance across variables and observations.
We then propose an effective two-phase iterative DAG learning algorithm to address the increasing optimization difficulties.
arXiv Detail & Related papers (2023-12-20T08:51:58Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.<n>One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Discovering Mixtures of Structural Causal Models from Time Series Data [23.18511951330646]
We propose a general variational inference-based framework called MCD to infer the underlying causal models.
Our approach employs an end-to-end training process that maximizes an evidence-lower bound for the data likelihood.
We demonstrate that our method surpasses state-of-the-art benchmarks in causal discovery tasks.
arXiv Detail & Related papers (2023-10-10T05:13:10Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Harmonization with Flow-based Causal Inference [12.739380441313022]
This paper presents a normalizing-flow-based method to perform counterfactual inference upon a structural causal model (SCM) to harmonize medical data.
We evaluate on multiple, large, real-world medical datasets to observe that this method leads to better cross-domain generalization compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2021-06-12T19:57:35Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.