The Impact of Foundational Models on Patient-Centric e-Health Systems
- URL: http://arxiv.org/abs/2507.21882v1
- Date: Tue, 29 Jul 2025 14:56:01 GMT
- Title: The Impact of Foundational Models on Patient-Centric e-Health Systems
- Authors: Elmira Onagh, Alireza Davoodi, Maleknaz Nayebi,
- Abstract summary: We investigate the integration and maturity of AI feature integration in 116 patient-centric healthcare applications.<n>Our results show that over 86.21% of applications remain at the early stages of AI integration, while only 13.79% demonstrate advanced AI integration.
- Score: 2.2667044928324747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Artificial Intelligence (AI) becomes increasingly embedded in healthcare technologies, understanding the maturity of AI in patient-centric applications is critical for evaluating its trustworthiness, transparency, and real-world impact. In this study, we investigate the integration and maturity of AI feature integration in 116 patient-centric healthcare applications. Using Large Language Models (LLMs), we extracted key functional features, which are then categorized into different stages of the Gartner AI maturity model. Our results show that over 86.21\% of applications remain at the early stages of AI integration, while only 13.79% demonstrate advanced AI integration.
Related papers
- A Large-Scale Vision-Language Dataset Derived from Open Scientific Literature to Advance Biomedical Generalist AI [70.06771291117965]
We introduce Biomedica, an open-source dataset derived from the PubMed Central Open Access subset.<n>Biomedica contains over 6 million scientific articles and 24 million image-text pairs.<n>We provide scalable streaming and search APIs through a web server, facilitating seamless integration with AI systems.
arXiv Detail & Related papers (2025-03-26T05:56:46Z) - Toward a Human-Centered AI-assisted Colonoscopy System in Australia [12.548421709213379]
Current development prioritizes machine learning model performance, overlooking essential aspects of user interface design, workflow integration, and overall user experience.<n>To realize AI's full potential, the HCI community must champion user-centered design, ensuring these systems are usable, support endoscopist expertise, and enhance patient outcomes.
arXiv Detail & Related papers (2025-03-15T23:36:48Z) - ScaleMAI: Accelerating the Development of Trusted Datasets and AI Models [46.80682547774335]
We propose ScaleMAI, an agent of AI-integrated data curation and annotation.<n>First, ScaleMAI creates a dataset of 25,362 CT scans, including per-voxel annotations for benign/malignant tumors and 24 anatomical structures.<n>Second, through progressive human-in-the-loop iterations, ScaleMAI provides Flagship AI Model that can approach the proficiency of expert annotators in detecting pancreatic tumors.
arXiv Detail & Related papers (2025-01-06T22:12:00Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.<n>Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - AIPatient: Simulating Patients with EHRs and LLM Powered Agentic Workflow [33.8495939261319]
We develop an advanced simulated patient system with AIPatient Knowledge Graph (AIPatient KG) as the input and Reasoning Retrieval-Augmented Generation (Reasoning RAG) as the generation backbone.
Reasoning RAG leverages six LLM powered agents spanning tasks including retrieval, KG query generation, abstraction, checker, rewrite, and summarization.
Our system also presents high readability (median Flesch Reading Ease 77.23; median Flesch Kincaid Grade 5.6), robustness (ANOVA F-value 0.6126, p>0.1), and stability (ANOVA F-value 0.782, p>0.1)
arXiv Detail & Related papers (2024-09-27T17:17:15Z) - The Potential and Perils of Generative Artificial Intelligence for Quality Improvement and Patient Safety [27.753117791280857]
Generative artificial intelligence (GenAI) has the potential to improve healthcare through automation that enhances the quality and safety of patient care.
We posit that the imminent application of GenAI in healthcare will be through well-defined, low risk, high value, and narrow applications.
We contrast this with a general, all-purpose AI model for end-to-end clinical decision making that improves clinician performance.
arXiv Detail & Related papers (2024-06-23T15:01:11Z) - Emotional Intelligence Through Artificial Intelligence : NLP and Deep Learning in the Analysis of Healthcare Texts [1.9374282535132377]
This manuscript presents a methodical examination of the utilization of Artificial Intelligence in the assessment of emotions in texts related to healthcare.
We scrutinize numerous research studies that employ AI to augment sentiment analysis, categorize emotions, and forecast patient outcomes.
There persist challenges, which encompass ensuring the ethical application of AI, safeguarding patient confidentiality, and addressing potential biases in algorithmic procedures.
arXiv Detail & Related papers (2024-03-14T15:58:13Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
We launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution.
Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK.
arXiv Detail & Related papers (2021-11-18T00:43:41Z) - Early Mobility Recognition for Intensive Care Unit Patients Using
Accelerometers [3.772793938066986]
We propose a new healthcare application of human activity recognition, early mobility recognition for Intensive Care Unit(ICU) patients.
Our system includes accelerometer-based data collection from ICU patients and an AI model to recognize patients' early mobility.
Our results show that our system improves model accuracy from 77.78% to 81.86% and reduces the model instability (standard deviation) from 16.69% to 6.92%.
arXiv Detail & Related papers (2021-06-28T22:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.