Reasoning Language Models for Root Cause Analysis in 5G Wireless Networks
- URL: http://arxiv.org/abs/2507.21974v1
- Date: Tue, 29 Jul 2025 16:21:42 GMT
- Title: Reasoning Language Models for Root Cause Analysis in 5G Wireless Networks
- Authors: Mohamed Sana, Nicola Piovesan, Antonio De Domenico, Yibin Kang, Haozhe Zhang, Merouane Debbah, Fadhel Ayed,
- Abstract summary: Root Cause Analysis (RCA) in mobile networks remains a challenging task due to the need for interpretability, domain expertise, and causal reasoning.<n>We propose a lightweight framework that leverages Large Language Models (LLMs) for RCA.
- Score: 10.074110713679739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Root Cause Analysis (RCA) in mobile networks remains a challenging task due to the need for interpretability, domain expertise, and causal reasoning. In this work, we propose a lightweight framework that leverages Large Language Models (LLMs) for RCA. To do so, we introduce TeleLogs, a curated dataset of annotated troubleshooting problems designed to benchmark RCA capabilities. Our evaluation reveals that existing open-source reasoning LLMs struggle with these problems, underscoring the need for domain-specific adaptation. To address this issue, we propose a two-stage training methodology that combines supervised fine-tuning with reinforcement learning to improve the accuracy and reasoning quality of LLMs. The proposed approach fine-tunes a series of RCA models to integrate domain knowledge and generate structured, multi-step diagnostic explanations, improving both interpretability and effectiveness. Extensive experiments across multiple LLM sizes show significant performance gains over state-of-the-art reasoning and non-reasoning models, including strong generalization to randomized test variants. These results demonstrate the promise of domain-adapted, reasoning-enhanced LLMs for practical and explainable RCA in network operation and management.
Related papers
- Coherent Multimodal Reasoning with Iterative Self-Evaluation for Vision-Language Models [4.064135211977999]
Large language models (LLMs) and vision-language models (LVLMs) struggle with complex, multi-step, cross-modal common sense reasoning tasks.<n>We propose the Coherent Multimodal Reasoning Framework (CMRF), a novel approach that enhances LVLMs' common sense reasoning capabilities.<n>CMRF mimics human problem-solving by decomposing complex queries, generating step-by-step inferences, and self-correcting errors.
arXiv Detail & Related papers (2025-08-04T20:33:58Z) - Can One Domain Help Others? A Data-Centric Study on Multi-Domain Reasoning via Reinforcement Learning [32.665418383317224]
We present a systematic investigation of multi-domain reasoning within the RLVR framework.<n>We focus on three primary domains: mathematical reasoning, code generation, and logical puzzle solving.<n>Our results offer significant insights into the dynamics governing domain interactions.
arXiv Detail & Related papers (2025-07-23T13:51:04Z) - Misaligning Reasoning with Answers -- A Framework for Assessing LLM CoT Robustness [3.9930400744726273]
We design a novel evaluation framework, MATCHA, to investigate the relationship between answer and reasoning.<n>In domains like education and healthcare, reasoning is key for model trustworthiness.<n>Our results show that LLMs exhibit greater vulnerability to input perturbations for multi-step and commonsense tasks than compared to logical tasks.
arXiv Detail & Related papers (2025-05-23T02:42:16Z) - General-Reasoner: Advancing LLM Reasoning Across All Domains [64.70599911897595]
Reinforcement learning (RL) has recently demonstrated strong potential in enhancing the reasoning capabilities of large language models (LLMs)<n>We propose General-Reasoner, a novel training paradigm designed to enhance LLM reasoning capabilities across diverse domains.<n>We train a series of models and evaluate them on a wide range of datasets covering wide domains like physics, chemistry, finance, electronics etc.
arXiv Detail & Related papers (2025-05-20T17:41:33Z) - Mapping the Minds of LLMs: A Graph-Based Analysis of Reasoning LLM [11.181783720439563]
Large Language Models (LLMs) display sophisticated reasoning abilities via extended Chain-of-Thought (CoT) generation.<n>RLMs often demonstrate counterintuitive and unstable behaviors, such as performance degradation under few-shot prompting.<n>We introduce a unified graph-based analytical framework for better modeling the reasoning processes of RLMs.
arXiv Detail & Related papers (2025-05-20T03:54:57Z) - A Survey of Scaling in Large Language Model Reasoning [62.92861523305361]
We provide a comprehensive examination of scaling in large Language models (LLMs) reasoning.<n>We analyze scaling in reasoning steps that improves multi-step inference and logical consistency.<n>We discuss scaling in training-enabled reasoning, focusing on optimization through iterative model improvement.
arXiv Detail & Related papers (2025-04-02T23:51:27Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
We introduce SEED-Bench-R1, a benchmark designed to evaluate post-training methods for MLLMs in video understanding.<n>It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions.<n>Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT)<n>Our detailed analysis reveals that RL enhances visual perception but often produces less coherent reasoning chains.
arXiv Detail & Related papers (2025-03-31T17:55:23Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks.<n>We propose textbfRAG-Star, a novel RAG approach that integrates retrieved information to guide the tree-based deliberative reasoning process.<n>Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
arXiv Detail & Related papers (2024-12-17T13:05:36Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
Large Language Models (LLMs) have demonstrated remarkable efficiency in tackling various tasks based on human instructions.
But studies reveal that they often struggle with tasks requiring reasoning, such as math or physics limitation.
This raises questions about whether LLMs truly comprehend embedded knowledge or merely learn to replicate the token distribution without a true understanding of the content.
We propose Decon Causal Adaptation (DCA), a novel parameter-efficient fine-tuning (PEFT) method to enhance the model's reasoning capabilities.
arXiv Detail & Related papers (2024-09-04T13:17:09Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.