X-Omni: Reinforcement Learning Makes Discrete Autoregressive Image Generative Models Great Again
- URL: http://arxiv.org/abs/2507.22058v1
- Date: Tue, 29 Jul 2025 17:59:04 GMT
- Title: X-Omni: Reinforcement Learning Makes Discrete Autoregressive Image Generative Models Great Again
- Authors: Zigang Geng, Yibing Wang, Yeyao Ma, Chen Li, Yongming Rao, Shuyang Gu, Zhao Zhong, Qinglin Lu, Han Hu, Xiaosong Zhang, Linus, Di Wang, Jie Jiang,
- Abstract summary: We develop a semantic image tokenizer, a unified autoregressive model for both language and images, and an offline diffusion decoder for image generation termed X- Omni.<n>X- Omni achieves state-of-the-art performance in image generation tasks using a 7B language model, producing images with high aesthetic quality while exhibiting strong capabilities in following instructions and rendering long texts.
- Score: 45.74833463136701
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerous efforts have been made to extend the ``next token prediction'' paradigm to visual contents, aiming to create a unified approach for both image generation and understanding. Nevertheless, attempts to generate images through autoregressive modeling with discrete tokens have been plagued by issues such as low visual fidelity, distorted outputs, and failure to adhere to complex instructions when rendering intricate details. These shortcomings are likely attributed to cumulative errors during autoregressive inference or information loss incurred during the discretization process. Probably due to this challenge, recent research has increasingly shifted toward jointly training image generation with diffusion objectives and language generation with autoregressive objectives, moving away from unified modeling approaches. In this work, we demonstrate that reinforcement learning can effectively mitigate artifacts and largely enhance the generation quality of a discrete autoregressive modeling method, thereby enabling seamless integration of image and language generation. Our framework comprises a semantic image tokenizer, a unified autoregressive model for both language and images, and an offline diffusion decoder for image generation, termed X-Omni. X-Omni achieves state-of-the-art performance in image generation tasks using a 7B language model, producing images with high aesthetic quality while exhibiting strong capabilities in following instructions and rendering long texts.
Related papers
- A Watermark for Auto-Regressive Image Generation Models [50.599325258178254]
We propose C-reweight, a distortion-free watermarking method explicitly designed for image generation models.<n>C-reweight mitigates retokenization mismatch while preserving image fidelity.
arXiv Detail & Related papers (2025-06-13T00:15:54Z) - Muddit: Liberating Generation Beyond Text-to-Image with a Unified Discrete Diffusion Model [87.23753533733046]
We introduce Muddit, a unified discrete diffusion transformer that enables fast and parallel generation across both text and image modalities.<n>Unlike prior unified diffusion models trained from scratch, Muddit integrates strong visual priors from a pretrained text-to-image backbone with a lightweight text decoder.
arXiv Detail & Related papers (2025-05-29T16:15:48Z) - Boosting Generative Image Modeling via Joint Image-Feature Synthesis [10.32324138962724]
We introduce a novel generative image modeling framework that seamlessly bridges the gap by leveraging a diffusion model to jointly model low-level image latents.<n>Our latent-semantic diffusion approach learns to generate coherent image-feature pairs from pure noise.<n>By eliminating the need for complex distillation objectives, our unified design simplifies training and unlocks a powerful new inference strategy: Representation Guidance.
arXiv Detail & Related papers (2025-04-22T17:41:42Z) - Unified Autoregressive Visual Generation and Understanding with Continuous Tokens [52.21981295470491]
We present UniFluid, a unified autoregressive framework for joint visual generation and understanding.<n>Our unified autoregressive architecture processes multimodal image and text inputs, generating discrete tokens for text and continuous tokens for image.<n>We find though there is an inherent trade-off between the image generation and understanding task, a carefully tuned training recipe enables them to improve each other.
arXiv Detail & Related papers (2025-03-17T17:58:30Z) - Visual Autoregressive Modeling for Image Super-Resolution [14.935662351654601]
We propose a novel visual autoregressive modeling for ISR framework with the form of next-scale prediction.<n>We collect large-scale data and design a training process to obtain robust generative priors.
arXiv Detail & Related papers (2025-01-31T09:53:47Z) - MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
We propose a novel Multi-Modal Auto-Regressive (MMAR) probabilistic modeling framework.<n>Unlike discretization line of method, MMAR takes in continuous-valued image tokens to avoid information loss in an efficient way.<n>We also propose a theoretically proven technique that addresses the numerical stability issue and a training strategy that balances the generation and understanding task goals.
arXiv Detail & Related papers (2024-10-14T17:57:18Z) - Active Generation for Image Classification [45.93535669217115]
We propose to address the efficiency of image generation by focusing on the specific needs and characteristics of the model.
With a central tenet of active learning, our method, named ActGen, takes a training-aware approach to image generation.
arXiv Detail & Related papers (2024-03-11T08:45:31Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.