An Asynchronous Decentralised Optimisation Algorithm for Nonconvex Problems
- URL: http://arxiv.org/abs/2507.22311v1
- Date: Wed, 30 Jul 2025 00:55:17 GMT
- Title: An Asynchronous Decentralised Optimisation Algorithm for Nonconvex Problems
- Authors: Behnam Mafakheri, Jonathan H. Manton, Iman Shames,
- Abstract summary: In this paper, we consider non decentralised optimisation and a network of distributed agents.<n>We develop an ADMM algorithm based on the Randomised.<n>Douglas.<n>Rachford Block agents.
- Score: 3.2689702143620147
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we consider nonconvex decentralised optimisation and learning over a network of distributed agents. We develop an ADMM algorithm based on the Randomised Block Coordinate Douglas-Rachford splitting method which enables agents in the network to distributedly and asynchronously compute a set of first-order stationary solutions of the problem. To the best of our knowledge, this is the first decentralised and asynchronous algorithm for solving nonconvex optimisation problems with convergence proof. The numerical examples demonstrate the efficiency of the proposed algorithm for distributed Phase Retrieval and sparse Principal Component Analysis problems.
Related papers
- Communication-Efficient Stochastic Distributed Learning [3.2923780772605595]
We address distributed learning problems, both non and convex, undirected networks.<n>In particular, we design a novel based on the distributed Alternating Method of Multipliers (MM) to address the challenges of high communication costs.
arXiv Detail & Related papers (2025-01-23T10:05:23Z) - Lower Bounds and Optimal Algorithms for Non-Smooth Convex Decentralized Optimization over Time-Varying Networks [57.24087627267086]
We consider the task of minimizing the sum of convex functions stored in a decentralized manner across the nodes of a communication network.
Lower bounds on the number of decentralized communications and (sub)gradient computations required to solve the problem have been established.
We develop the first optimal algorithm that matches these lower bounds and offers substantially improved theoretical performance compared to the existing state of the art.
arXiv Detail & Related papers (2024-05-28T10:28:45Z) - Decentralized Sum-of-Nonconvex Optimization [42.04181488477227]
We consider the optimization problem of the sum-of-non function, i.e., a guarantee function that is the average non-consensus number.
We propose an accelerated decentralized first-order algorithm by techniques of gradient, tracking into the rate, and multi-consensus.
arXiv Detail & Related papers (2024-02-04T05:48:45Z) - Stability and Generalization of the Decentralized Stochastic Gradient
Descent Ascent Algorithm [80.94861441583275]
We investigate the complexity of the generalization bound of the decentralized gradient descent (D-SGDA) algorithm.
Our results analyze the impact of different top factors on the generalization of D-SGDA.
We also balance it with the generalization to obtain the optimal convex-concave setting.
arXiv Detail & Related papers (2023-10-31T11:27:01Z) - Decentralized Multi-Level Compositional Optimization Algorithms with Level-Independent Convergence Rate [26.676582181833584]
Decentralized multi-level optimization is challenging because of the multilevel structure and decentralized communication.
We develop two novel decentralized optimization algorithms to optimize the multi-level compositional problem.
arXiv Detail & Related papers (2023-06-06T00:23:28Z) - Can Decentralized Stochastic Minimax Optimization Algorithms Converge
Linearly for Finite-Sum Nonconvex-Nonconcave Problems? [56.62372517641597]
Decentralized minimax optimization has been actively studied in the past few years due to its application in a wide range machine learning.
This paper develops two novel decentralized minimax optimization algorithms for the non-strongly-nonconcave problem.
arXiv Detail & Related papers (2023-04-24T02:19:39Z) - Decentralized Inexact Proximal Gradient Method With Network-Independent
Stepsizes for Convex Composite Optimization [39.352542703876104]
This paper considers decentralized convex composite optimization over undirected and connected networks.
A novel CTA (Combine-Then-Adapt)-based decentralized algorithm is proposed under uncoordinated network-independent constant stepsizes.
arXiv Detail & Related papers (2023-02-07T03:50:38Z) - A Penalty-Based Method for Communication-Efficient Decentralized Bilevel Programming [14.35928967799696]
This paper introduces a penalty function-based decentralized algorithm for solving bilevel programming problems over a decentralized network.
A key feature of the proposed algorithm is the estimation of the hyper-gradient of the penalty function.
Our theoretical framework ensures non-asymptotic convergence to the optimal solution of the original problem under various convexity conditions.
arXiv Detail & Related papers (2022-11-08T08:39:30Z) - On Accelerating Distributed Convex Optimizations [0.0]
This paper studies a distributed multi-agent convex optimization problem.
We show that the proposed algorithm converges linearly with an improved rate of convergence than the traditional and adaptive gradient-descent methods.
We demonstrate our algorithm's superior performance compared to prominent distributed algorithms for solving real logistic regression problems.
arXiv Detail & Related papers (2021-08-19T13:19:54Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - A Multi-Agent Primal-Dual Strategy for Composite Optimization over
Distributed Features [52.856801164425086]
We study multi-agent sharing optimization problems with the objective function being the sum of smooth local functions plus a convex (possibly non-smooth) coupling function.
arXiv Detail & Related papers (2020-06-15T19:40:24Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.