A Segmentation Framework for Accurate Diagnosis of Amyloid Positivity without Structural Images
- URL: http://arxiv.org/abs/2507.22336v1
- Date: Wed, 30 Jul 2025 02:44:16 GMT
- Title: A Segmentation Framework for Accurate Diagnosis of Amyloid Positivity without Structural Images
- Authors: Penghan Zhu, Shurui Mei, Shushan Chen, Xiaobo Chu, Shanbo He, Ziyi Liu,
- Abstract summary: This study proposes a deep learning-based framework for automated segmentation of brain regions using positron emission tomography (PET) images alone.<n>A 3D U-Net architecture with four layers of depth was trained and validated on a dataset of 200 F18-betapir amyloid-PET scans.<n>The model achieved a classification accuracy of 0.98 for amyloid positivity based on regional uptake quantification.
- Score: 9.423899158217232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study proposes a deep learning-based framework for automated segmentation of brain regions and classification of amyloid positivity using positron emission tomography (PET) images alone, without the need for structural MRI or CT. A 3D U-Net architecture with four layers of depth was trained and validated on a dataset of 200 F18-florbetapir amyloid-PET scans, with an 130/20/50 train/validation/test split. Segmentation performance was evaluated using Dice similarity coefficients across 30 brain regions, with scores ranging from 0.45 to 0.88, demonstrating high anatomical accuracy, particularly in subcortical structures. Quantitative fidelity of PET uptake within clinically relevant regions. Precuneus, prefrontal cortex, gyrus rectus, and lateral temporal cortex was assessed using normalized root mean square error, achieving values as low as 0.0011. Furthermore, the model achieved a classification accuracy of 0.98 for amyloid positivity based on regional uptake quantification, with an area under the ROC curve (AUC) of 0.99. These results highlight the model's potential for integration into PET only diagnostic pipelines, particularly in settings where structural imaging is not available. This approach reduces dependence on coregistration and manual delineation, enabling scalable, reliable, and reproducible analysis in clinical and research applications. Future work will focus on clinical validation and extension to diverse PET tracers including C11 PiB and other F18 labeled compounds.
Related papers
- Microelectrode Signal Dynamics as Biomarkers of Subthalamic Nucleus Entry on Deep Brain Stimulation: A Nonlinear Feature Approach [0.0]
We propose a framework that leverages nonlinear dynamics and entropy-based metrics to classify neural activity recorded inside versus outside the STN.<n>Our results highlight the potential of nonlinear and entropy signal descriptors in supporting real-time, data-driven decision-making during DBS surgeries.
arXiv Detail & Related papers (2025-06-14T23:23:26Z) - Explainable Anatomy-Guided AI for Prostate MRI: Foundation Models and In Silico Clinical Trials for Virtual Biopsy-based Risk Assessment [3.5408411348831232]
We present a fully automated, anatomically guided deep learning pipeline for prostate cancer (PCa) risk stratification using routine MRI.<n>The pipeline integrates three key components: an nnU-Net module for segmenting the prostate gland and its zones on axial T2-weighted MRI; a classification module based on the DiceedPT Swin Transformer foundation model, fine-tuned on 3D patches with optional anatomical priors and clinical data; and a VAE-GAN framework for generating counterfactual heatmaps that localize decision-driving image regions.
arXiv Detail & Related papers (2025-05-23T14:40:09Z) - LymphAtlas- A Unified Multimodal Lymphoma Imaging Repository Delivering AI-Enhanced Diagnostic Insight [3.746123328463508]
This study integrates PET metabolic information with CT anatomical structures to establish a 3D multimodal segmentation dataset for lymphoma based on PET/CT examinations.<n>We retrospectively collected 483 examination datasets acquired between March 2011 and May 2024, involving 220 patients.
arXiv Detail & Related papers (2025-04-29T06:10:12Z) - TRUSTED: The Paired 3D Transabdominal Ultrasound and CT Human Data for
Kidney Segmentation and Registration Research [42.90853857929316]
Inter-modal image registration (IMIR) and image segmentation with abdominal Ultrasound (US) data has many important clinical applications.
We propose TRUSTED (the Tridimensional Ultra Sound TomodEnsitometrie dataset), comprising paired transabdominal 3DUS and CT kidney images from 48 human patients.
arXiv Detail & Related papers (2023-10-19T11:09:50Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
Cross-scale associations exist in the image patterns between the same case's CT images and its pathological images.
We propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on CT images.
arXiv Detail & Related papers (2023-08-09T02:04:05Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - Corneal endothelium assessment in specular microscopy images with Fuchs'
dystrophy via deep regression of signed distance maps [48.498376125522114]
This paper proposes a UNet-based segmentation approach that requires minimal post-processing.
It achieves reliable CE morphometric assessment and guttae identification across all degrees of Fuchs' dystrophy.
arXiv Detail & Related papers (2022-10-13T15:34:20Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - A Deep Learning-Based Approach to Extracting Periosteal and Endosteal
Contours of Proximal Femur in Quantitative CT Images [25.76523855274612]
A three-dimensional (3D) end-to-end fully convolutional neural network was developed for our segmentation task.
Two models with the same network structures were trained and they achieved a dice similarity coefficient (DSC) of 97.87% and 96.49% for the periosteal and endosteal contours, respectively.
It demonstrated a strong potential for clinical use, including the hip fracture risk prediction and finite element analysis.
arXiv Detail & Related papers (2021-02-03T10:23:41Z) - A Deep Learning-Based Method for Automatic Segmentation of Proximal
Femur from Quantitative Computed Tomography Images [5.731199807877257]
We developed a 3D image segmentation method based V on-Net, an end-to-end fully convolutional neural network (CNN)
We performed experiments to evaluate the effectiveness of the proposed segmentation method.
arXiv Detail & Related papers (2020-06-09T21:16:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.