MSQ: Memory-Efficient Bit Sparsification Quantization
- URL: http://arxiv.org/abs/2507.22349v1
- Date: Wed, 30 Jul 2025 03:21:29 GMT
- Title: MSQ: Memory-Efficient Bit Sparsification Quantization
- Authors: Seokho Han, Seoyeon Yoon, Jinhee Kim, Dongwei Wang, Kang Eun Jeon, Huanrui Yang, Jong Hwan Ko,
- Abstract summary: Mixed-precision quantization is widely favored, as it offers a superior balance between efficiency and accuracy.<n>We propose Memory-Efficient Bit Sparsification Quantization (MSQ), a novel approach that addresses these limitations.<n>MSQ achieves up to 8.00x reduction in trainable parameters and up to 86% reduction in training time compared to previous bit-level quantization.
- Score: 11.510434574824213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As deep neural networks (DNNs) see increased deployment on mobile and edge devices, optimizing model efficiency has become crucial. Mixed-precision quantization is widely favored, as it offers a superior balance between efficiency and accuracy compared to uniform quantization. However, finding the optimal precision for each layer is challenging. Recent studies utilizing bit-level sparsity have shown promise, yet they often introduce substantial training complexity and high GPU memory requirements. In this paper, we propose Memory-Efficient Bit Sparsification Quantization (MSQ), a novel approach that addresses these limitations. MSQ applies a round-clamp quantizer to enable differentiable computation of the least significant bits (LSBs) from model weights. It further employs regularization to induce sparsity in these LSBs, enabling effective precision reduction without explicit bit-level parameter splitting. Additionally, MSQ incorporates Hessian information, allowing the simultaneous pruning of multiple LSBs to further enhance training efficiency. Experimental results show that MSQ achieves up to 8.00x reduction in trainable parameters and up to 86% reduction in training time compared to previous bit-level quantization, while maintaining competitive accuracy and compression rates. This makes it a practical solution for training efficient DNNs on resource-constrained devices.
Related papers
- Mix-QSAM: Mixed-Precision Quantization of the Segment Anything Model [0.0]
Mix-QSAM is a mixed-precision Post-Training Quantization (PTQ) framework for the Segment Anything Model (SAM)<n>We introduce a layer-wise importance score, derived using Kullback-Leibler (KL) divergence, to quantify each layer's contribution to the model's output.<n>We also introduce cross-layer synergy, a novel metric based on causal mutual information, to capture dependencies between adjacent layers.
arXiv Detail & Related papers (2025-05-08T00:08:31Z) - FineQ: Software-Hardware Co-Design for Low-Bit Fine-Grained Mixed-Precision Quantization of LLMs [13.951330786310262]
FineQ is a software- hardware co-design for low-bit fine-grained mixed-precision quantization of large language models.<n>It partitions the weights into finer-grained clusters and considers the distribution of outliers within these clusters.<n>It achieves higher model accuracy compared to the SOTA mixed-precision quantization algorithm at a close average bit-width.
arXiv Detail & Related papers (2025-04-28T12:47:23Z) - Q-MambaIR: Accurate Quantized Mamba for Efficient Image Restoration [34.43633070396096]
State-Space Models (SSMs) have attracted considerable attention in Image Restoration (IR)<n>Q-MambaIR is an accurate, efficient, and flexible Quantized Mamba for IR tasks.
arXiv Detail & Related papers (2025-03-27T20:34:11Z) - EfficientQAT: Efficient Quantization-Aware Training for Large Language Models [50.525259103219256]
quantization-aware training (QAT) offers a solution by reducing memory consumption through low-bit representations with minimal accuracy loss.<n>We propose Efficient Quantization-Aware Training (EfficientQAT), a more feasible QAT algorithm.<n> EfficientQAT involves two consecutive phases: Block-wise training of all parameters (Block-AP) and end-to-end training of quantization parameters (E2E-QP)
arXiv Detail & Related papers (2024-07-10T17:53:30Z) - Gradient-based Automatic Mixed Precision Quantization for Neural Networks On-Chip [0.9187138676564589]
We present High Granularity Quantization (HGQ), an innovative quantization-aware training method.
HGQ fine-tune the per-weight and per-activation precision by making them optimizable through gradient descent.
This approach enables ultra-low latency and low power neural networks on hardware capable of performing arithmetic operations.
arXiv Detail & Related papers (2024-05-01T17:18:46Z) - DB-LLM: Accurate Dual-Binarization for Efficient LLMs [83.70686728471547]
Large language models (LLMs) have significantly advanced the field of natural language processing.
Existing ultra-low-bit quantization always causes severe accuracy drops.
We propose a novel Dual-Binarization method for LLMs, namely DB-LLM.
arXiv Detail & Related papers (2024-02-19T09:04:30Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - AMED: Automatic Mixed-Precision Quantization for Edge Devices [3.5223695602582614]
Quantized neural networks are well known for reducing the latency, power consumption, and model size without significant harm to the performance.
Mixed-precision quantization offers better utilization of customized hardware that supports arithmetic operations at different bitwidths.
arXiv Detail & Related papers (2022-05-30T21:23:22Z) - Low-Precision Training in Logarithmic Number System using Multiplicative
Weight Update [49.948082497688404]
Training large-scale deep neural networks (DNNs) currently requires a significant amount of energy, leading to serious environmental impacts.
One promising approach to reduce the energy costs is representing DNNs with low-precision numbers.
We jointly design a lowprecision training framework involving a logarithmic number system (LNS) and a multiplicative weight update training method, termed LNS-Madam.
arXiv Detail & Related papers (2021-06-26T00:32:17Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
We propose a Fully Quantized image Super-Resolution framework (FQSR) to jointly optimize efficiency and accuracy.
We apply our quantization scheme on multiple mainstream super-resolution architectures, including SRResNet, SRGAN and EDSR.
Our FQSR using low bits quantization can achieve on par performance compared with the full-precision counterparts on five benchmark datasets.
arXiv Detail & Related papers (2020-11-29T03:53:49Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.