Mix-QSAM: Mixed-Precision Quantization of the Segment Anything Model
- URL: http://arxiv.org/abs/2505.04861v1
- Date: Thu, 08 May 2025 00:08:31 GMT
- Title: Mix-QSAM: Mixed-Precision Quantization of the Segment Anything Model
- Authors: Navin Ranjan, Andreas Savakis,
- Abstract summary: Mix-QSAM is a mixed-precision Post-Training Quantization (PTQ) framework for the Segment Anything Model (SAM)<n>We introduce a layer-wise importance score, derived using Kullback-Leibler (KL) divergence, to quantify each layer's contribution to the model's output.<n>We also introduce cross-layer synergy, a novel metric based on causal mutual information, to capture dependencies between adjacent layers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Segment Anything Model (SAM) is a popular vision foundation model; however, its high computational and memory demands make deployment on resource-constrained devices challenging. While Post-Training Quantization (PTQ) is a practical approach for reducing computational overhead, existing PTQ methods rely on fixed bit-width quantization, leading to suboptimal accuracy and efficiency. To address this limitation, we propose Mix-QSAM, a mixed-precision PTQ framework for SAM. First, we introduce a layer-wise importance score, derived using Kullback-Leibler (KL) divergence, to quantify each layer's contribution to the model's output. Second, we introduce cross-layer synergy, a novel metric based on causal mutual information, to capture dependencies between adjacent layers. This ensures that highly interdependent layers maintain similar bit-widths, preventing abrupt precision mismatches that degrade feature propagation and numerical stability. Using these metrics, we formulate an Integer Quadratic Programming (IQP) problem to determine optimal bit-width allocation under model size and bit-operation constraints, assigning higher precision to critical layers while minimizing bit-width in less influential layers. Experimental results demonstrate that Mix-QSAM consistently outperforms existing PTQ methods on instance segmentation and object detection tasks, achieving up to 20% higher average precision under 6-bit and 4-bit mixed-precision settings, while maintaining computational efficiency.
Related papers
- QuantVSR: Low-Bit Post-Training Quantization for Real-World Video Super-Resolution [53.13952833016505]
We propose a low-bit quantization model for real-world video super-resolution (VSR)<n>We use a calibration dataset to measure both spatial and temporal complexity for each layer.<n>We refine the FP and low-bit branches to achieve simultaneous optimization.
arXiv Detail & Related papers (2025-08-06T14:35:59Z) - MSQ: Memory-Efficient Bit Sparsification Quantization [11.510434574824213]
Mixed-precision quantization is widely favored, as it offers a superior balance between efficiency and accuracy.<n>We propose Memory-Efficient Bit Sparsification Quantization (MSQ), a novel approach that addresses these limitations.<n>MSQ achieves up to 8.00x reduction in trainable parameters and up to 86% reduction in training time compared to previous bit-level quantization.
arXiv Detail & Related papers (2025-07-30T03:21:29Z) - MPQ-DMv2: Flexible Residual Mixed Precision Quantization for Low-Bit Diffusion Models with Temporal Distillation [74.34220141721231]
We present MPQ-DMv2, an improved textbfMixed textbfPrecision textbfQuantization framework for extremely low-bit textbfDiffusion textbfModels.
arXiv Detail & Related papers (2025-07-06T08:16:50Z) - FineQ: Software-Hardware Co-Design for Low-Bit Fine-Grained Mixed-Precision Quantization of LLMs [13.951330786310262]
FineQ is a software- hardware co-design for low-bit fine-grained mixed-precision quantization of large language models.<n>It partitions the weights into finer-grained clusters and considers the distribution of outliers within these clusters.<n>It achieves higher model accuracy compared to the SOTA mixed-precision quantization algorithm at a close average bit-width.
arXiv Detail & Related papers (2025-04-28T12:47:23Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
Post-training quantization (PTQ) is a powerful compression technique investigated in large language models (LLMs)
Existing PTQ methods are not ideal in terms of accuracy and efficiency, especially with below 4 bit-widths.
This paper presents a Salience-Driven Mixed-Precision Quantization scheme for LLMs, namely SliM-LLM.
arXiv Detail & Related papers (2024-05-23T16:21:48Z) - Towards Accurate Post-training Quantization for Reparameterized Models [6.158896686945439]
Current Post-training Quantization (PTQ) methods often lead to significant accuracy degradation.
This is primarily caused by channel-specific and sample-specific outliers.
We propose RepAPQ, a novel framework that preserves the accuracy of quantized reparameterization models.
arXiv Detail & Related papers (2024-02-25T15:42:12Z) - CBQ: Cross-Block Quantization for Large Language Models [66.82132832702895]
Post-training quantization (PTQ) has played a key role in compressing large language models (LLMs) with ultra-low costs.<n>We propose CBQ, a cross-block reconstruction-based PTQ method for LLMs.<n> CBQ employs a cross-block dependency using a reconstruction scheme, establishing long-range dependencies across multiple blocks to minimize error accumulation.
arXiv Detail & Related papers (2023-12-13T07:56:27Z) - Mixed-Precision Quantization for Deep Vision Models with Integer Quadratic Programming [7.0146264551420066]
Quantization is a widely used technique to compress neural networks.<n>MPQ addresses this by assigning varied bit-widths to layers, optimizing the accuracy-efficiency trade-off.<n>We introduce CLADO, a practical sensitivity-based MPQ algorithm that captures crosslayer dependency of quantization error.
arXiv Detail & Related papers (2023-07-11T15:56:00Z) - Augmenting Hessians with Inter-Layer Dependencies for Mixed-Precision
Post-Training Quantization [7.392278887917975]
We propose a mixed-precision post training quantization approach that assigns different numerical precisions to tensors in a network based on their specific needs.
Our experiments demonstrate latency reductions compared to a 16-bit baseline of $25.48%$, $21.69%$, and $33.28%$ respectively.
arXiv Detail & Related papers (2023-06-08T02:18:58Z) - CSQ: Growing Mixed-Precision Quantization Scheme with Bi-level
Continuous Sparsification [51.81850995661478]
Mixed-precision quantization has been widely applied on deep neural networks (DNNs)
Previous attempts on bit-level regularization and pruning-based dynamic precision adjustment during training suffer from noisy gradients and unstable convergence.
We propose Continuous Sparsification Quantization (CSQ), a bit-level training method to search for mixed-precision quantization schemes with improved stability.
arXiv Detail & Related papers (2022-12-06T05:44:21Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Sharpness-aware Quantization for Deep Neural Networks [45.150346855368]
Sharpness-Aware Quantization (SAQ) is a novel method to explore the effect of Sharpness-Aware Minimization (SAM) on model compression.
We show that SAQ improves the generalization performance of the quantized models, yielding the SOTA results in uniform quantization.
arXiv Detail & Related papers (2021-11-24T05:16:41Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
We propose a Fully Quantized image Super-Resolution framework (FQSR) to jointly optimize efficiency and accuracy.
We apply our quantization scheme on multiple mainstream super-resolution architectures, including SRResNet, SRGAN and EDSR.
Our FQSR using low bits quantization can achieve on par performance compared with the full-precision counterparts on five benchmark datasets.
arXiv Detail & Related papers (2020-11-29T03:53:49Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.