論文の概要: Aleatoric Uncertainty Medical Image Segmentation Estimation via Flow Matching
- arxiv url: http://arxiv.org/abs/2507.22418v1
- Date: Wed, 30 Jul 2025 06:45:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-31 16:14:18.034468
- Title: Aleatoric Uncertainty Medical Image Segmentation Estimation via Flow Matching
- Title(参考訳): フローマッチングによるアレータリック不確かさの医用画像分割推定
- Authors: Phi Van Nguyen, Ngoc Huynh Trinh, Duy Minh Lam Nguyen, Phu Loc Nguyen, Quoc Long Tran,
- Abstract要約: 医用画像のセグメンテーションにおけるアレタリック不確かさの定量化は、専門家のアノテータが観察する自然変動の反映であるため重要である。
提案手法は, 正確な密度を学習するシミュレーション不要なフローベース生成モデルである条件付きフローマッチングを利用する。
- 参考スコア(独自算出の注目度): 0.157286095422595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantifying aleatoric uncertainty in medical image segmentation is critical since it is a reflection of the natural variability observed among expert annotators. A conventional approach is to model the segmentation distribution using the generative model, but current methods limit the expression ability of generative models. While current diffusion-based approaches have demonstrated impressive performance in approximating the data distribution, their inherent stochastic sampling process and inability to model exact densities limit their effectiveness in accurately capturing uncertainty. In contrast, our proposed method leverages conditional flow matching, a simulation-free flow-based generative model that learns an exact density, to produce highly accurate segmentation results. By guiding the flow model on the input image and sampling multiple data points, our approach synthesizes segmentation samples whose pixel-wise variance reliably reflects the underlying data distribution. This sampling strategy captures uncertainties in regions with ambiguous boundaries, offering robust quantification that mirrors inter-annotator differences. Experimental results demonstrate that our method not only achieves competitive segmentation accuracy but also generates uncertainty maps that provide deeper insights into the reliability of the segmentation outcomes. The code for this paper is freely available at https://github.com/huynhspm/Data-Uncertainty
- Abstract(参考訳): 医用画像のセグメンテーションにおけるアレタリック不確かさの定量化は、専門家のアノテータが観察する自然変動の反映であるので重要である。
従来の手法では、生成モデルを用いてセグメント分布をモデル化するが、現在の手法では生成モデルの表現能力を制限している。
現在の拡散に基づくアプローチは、データの分布を近似する際、顕著な性能を示しているが、その固有の確率的サンプリングプロセスと、正確な密度をモデル化できないことは、不確実性を正確に捉える上での有効性を制限している。
これとは対照的に,提案手法では,精度の高いセグメンテーション結果を生成するために,シミュレーション不要なフローベース生成モデルである条件付きフローマッチングを利用する。
入力画像上にフローモデルを誘導し,複数のデータ点をサンプリングすることにより,画素幅のばらつきが基礎となるデータ分布を確実に反映するセグメンテーションサンプルを合成する。
このサンプリング戦略は曖昧な境界を持つ領域の不確実性を捉え、アノテーション間の差を反映する堅牢な定量化を提供する。
実験の結果,提案手法は競合セグメンテーション精度を達成するだけでなく,セグメンテーション結果の信頼性について深い洞察を与える不確実性マップを生成することがわかった。
この論文のコードはhttps://github.com/huynhspm/Data-Uncertaintyで無償公開されている。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
一般のスコアミスマッチ拡散サンプリング器に対する明示的な次元依存性を持つ最初の性能保証を示す。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Uncertainty quantification and out-of-distribution detection using
surjective normalizing flows [46.51077762143714]
本稿では,深層ニューラルネットワークモデルにおける分布外データセットの探索的正規化フローを用いた簡単なアプローチを提案する。
本手法は, 流通外データと流通内データとを確実に識別できることを示す。
論文 参考訳(メタデータ) (2023-11-01T09:08:35Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
セグメンテーションモデルは敵の摂動に弱いため、医療や自動運転といった重要な意思決定システムでの使用を妨げます。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
論文 参考訳(メタデータ) (2023-06-16T16:30:39Z) - Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture
of Stochastic Expert [24.216869988183092]
入力画像にあいまいさが存在する場合、セグメンテーションにおけるデータ独立不確実性(いわゆるアレタリック不確実性)を捉えることに重点を置いている。
本稿では,各専門家ネットワークがアレータティック不確実性の異なるモードを推定する,新しい専門家モデル(MoSE)を提案する。
We developed a Wasserstein-like loss that makes direct minimizes the distribution distance between the MoSE and ground truth annotations。
論文 参考訳(メタデータ) (2022-12-14T16:48:21Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - Robustness via Uncertainty-aware Cycle Consistency [44.34422859532988]
非ペア画像-画像間の変換とは、対応する画像対を使わずに画像間マッピングを学習することを指す。
既存の手法は、外乱や予測の不確実性にロバスト性を明示的にモデル化することなく決定論的マッピングを学習する。
不確実性を考慮した一般化適応サイクル一貫性(UGAC)に基づく新しい確率的手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T15:33:21Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
ディープニューラルネットワークは、信頼できない不確実性推定で不正確な予測を行うことが多い。
分布シフトの下でのラベルなし入力とモデルパラメータとの明確に定義された関係を提供するベイズモデルを導出する。
本手法は精度と不確実性の両方を向上することを示す。
論文 参考訳(メタデータ) (2021-09-27T01:09:08Z) - Uncertainty-aware Generalized Adaptive CycleGAN [44.34422859532988]
unpaired image-to-image translationは、教師なしの方法で画像ドメイン間のマッピングを学ぶことを指す。
既存の手法はしばしば、外れ値への堅牢性や予測不確実性を明示的にモデル化せずに決定論的マッピングを学習する。
Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC) という新しい確率論的手法を提案する。
論文 参考訳(メタデータ) (2021-02-23T15:22:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。