Spec-VLA: Speculative Decoding for Vision-Language-Action Models with Relaxed Acceptance
- URL: http://arxiv.org/abs/2507.22424v1
- Date: Wed, 30 Jul 2025 07:04:09 GMT
- Title: Spec-VLA: Speculative Decoding for Vision-Language-Action Models with Relaxed Acceptance
- Authors: Songsheng Wang, Rucheng Yu, Zhihang Yuan, Chao Yu, Feng Gao, Yu Wang, Derek F. Wong,
- Abstract summary: This work introduces Spec-VLA, an SD framework designed to accelerate Vision-Language-Action (VLA) models.<n>To boost the generation speed, we propose an effective mechanism to relax acceptance utilizing the relative distances represented by the action tokens of the VLA model.
- Score: 27.47568622830058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-Language-Action (VLA) models have made substantial progress by leveraging the robust capabilities of Visual Language Models (VLMs). However, VLMs' significant parameter size and autoregressive (AR) decoding nature impose considerable computational demands on VLA models. While Speculative Decoding (SD) has shown efficacy in accelerating Large Language Models (LLMs) by incorporating efficient drafting and parallel verification, allowing multiple tokens to be generated in one forward pass, its application to VLA models remains unexplored. This work introduces Spec-VLA, an SD framework designed to accelerate VLA models. Due to the difficulty of the action prediction task and the greedy decoding mechanism of the VLA models, the direct application of the advanced SD framework to the VLA prediction task yields a minor speed improvement. To boost the generation speed, we propose an effective mechanism to relax acceptance utilizing the relative distances represented by the action tokens of the VLA model. Empirical results across diverse test scenarios affirm the effectiveness of the Spec-VLA framework, and further analysis substantiates the impact of our proposed strategies, which enhance the acceptance length by 44%, achieving 1.42 times speedup compared with the OpenVLA baseline, without compromising the success rate. The success of the Spec-VLA framework highlights the potential for broader application of speculative execution in VLA prediction scenarios.
Related papers
- EdgeVLA: Efficient Vision-Language-Action Models [0.4005096060512278]
This paper introduces Edge VLA, a novel approach designed to significantly enhance the inference speed of Vision-Language-Action (VLA) models.<n>We achieve this through two key innovations: 1) Eliminating the autoregressive requirement for end-effector position prediction, leading to a 7x speedup in inference, and 2) Leveraging the efficiency of Small Language Models (SLMs)<n>Our early results demonstrate that EVLA achieves comparable training characteristics to OpenVLA while offering substantial gains in inference speed and memory efficiency.
arXiv Detail & Related papers (2025-07-18T16:15:09Z) - Unified Vision-Language-Action Model [86.68814779303429]
We present UniVLA, a unified and native multimodal VLA model that autoregressively models vision, language, and action signals as discrete token sequences.<n>Our approach sets new state-of-the-art results across several widely used simulation benchmarks, including CALVIN, LIBERO, and Simplenv-Bridge.<n>We further demonstrate its broad applicability on real-world ALOHA manipulation and autonomous driving.
arXiv Detail & Related papers (2025-06-24T17:59:57Z) - SP-VLA: A Joint Model Scheduling and Token Pruning Approach for VLA Model Acceleration [69.54069477520534]
Vision-Language-Action (VLA) models have attracted increasing attention for their strong control capabilities.<n>Their high computational cost and low execution frequency hinder their suitability for real-time tasks such as robotic manipulation and autonomous navigation.<n>We propose SP-VLA, a unified framework that accelerates VLA models by jointly scheduling models and pruning tokens.
arXiv Detail & Related papers (2025-06-15T05:04:17Z) - Think Twice, Act Once: Token-Aware Compression and Action Reuse for Efficient Inference in Vision-Language-Action Models [30.7855782696894]
Vision-Language-Action (VLA) models have emerged as a powerful paradigm for general-purpose robot control through natural language instructions.<n>We propose FlashVLA, the first training-free and plug-and-play acceleration framework that enables action reuse in VLA models.
arXiv Detail & Related papers (2025-05-27T13:47:18Z) - CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models [89.44024245194315]
We introduce a method that incorporates explicit visual chain-of-thought (CoT) reasoning into vision-language-action models (VLAs)<n>We introduce CoT-VLA, a state-of-the-art 7B VLA that can understand and generate visual and action tokens.<n>Our experimental results demonstrate that CoT-VLA achieves strong performance, outperforming the state-of-the-art VLA model by 17% in real-world manipulation tasks and 6% in simulation benchmarks.
arXiv Detail & Related papers (2025-03-27T22:23:04Z) - Accelerating Vision-Language-Action Model Integrated with Action Chunking via Parallel Decoding [24.1236728596359]
Vision-Language-Action (VLA) models demonstrate remarkable potential for generalizable robotic manipulation.<n>We propose PD-VLA, the first parallel decoding framework for VLA models integrated with action chunking.<n>Our framework reformulates autoregressive decoding as a nonlinear system solved by parallel fixed-point iterations.
arXiv Detail & Related papers (2025-03-04T06:12:08Z) - Fine-Tuning Vision-Language-Action Models: Optimizing Speed and Success [100.226572152954]
We present an optimized fine-tuning recipe for vision-language-action models (VLAs)<n>Our recipe boosts OpenVLA's average success rate across four task suites from 76.5% to 97.1% while increasing action generation throughput by 26$times$.<n>In real-world evaluations, our fine-tuning recipe enables OpenVLA to successfully execute dexterous, high-frequency control tasks on a bimanual ALOHA robot.
arXiv Detail & Related papers (2025-02-27T00:30:29Z) - VLsI: Verbalized Layers-to-Interactions from Large to Small Vision Language Models [63.27511432647797]
We propose VLsI: Verbalized Layers-to-Interactions, a new VLM family in 2B and 7B model sizes.<n>We validate VLsI across ten challenging vision-language benchmarks, achieving notable performance gains (11.0% for 2B and 17.4% for 7B) over GPT-4V.
arXiv Detail & Related papers (2024-12-02T18:58:25Z) - CogACT: A Foundational Vision-Language-Action Model for Synergizing Cognition and Action in Robotic Manipulation [100.25567121604382]
Vision-Language-Action (VLA) models have improved robotic manipulation in terms of language-guided task execution and generalization to unseen scenarios.<n>We present a new advanced VLA architecture derived from Vision-Language-Models (VLM)<n>We show that our model not only significantly surpasses existing VLAs in task performance and but also exhibits remarkable adaptation to new robots and generalization to unseen objects and backgrounds.
arXiv Detail & Related papers (2024-11-29T12:06:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.