Comparing Normalizing Flows with Kernel Density Estimation in Estimating Risk of Automated Driving Systems
- URL: http://arxiv.org/abs/2507.22429v1
- Date: Wed, 30 Jul 2025 07:16:59 GMT
- Title: Comparing Normalizing Flows with Kernel Density Estimation in Estimating Risk of Automated Driving Systems
- Authors: Erwin de Gelder, Maren Buermann, Olaf Op den Camp,
- Abstract summary: This paper considers the use of Normalizing Flows (NF) for estimating the Probability Density Function (PDF) of the parameters.<n> NF are a class of generative models that transform a simple base distribution into a complex one using a sequence of invertible and differentiable mappings.<n>We demonstrate the effectiveness of NF in quantifying risk and risk uncertainty of an ADS, comparing its performance with Kernel Density Estimation (KDE)
- Score: 1.0533738606966752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of safety validation methods is essential for the safe deployment and operation of Automated Driving Systems (ADSs). One of the goals of safety validation is to prospectively evaluate the risk of an ADS dealing with real-world traffic. Scenario-based assessment is a widely-used approach, where test cases are derived from real-world driving data. To allow for a quantitative analysis of the system performance, the exposure of the scenarios must be accurately estimated. The exposure of scenarios at parameter level is expressed using a Probability Density Function (PDF). However, assumptions about the PDF, such as parameter independence, can introduce errors, while avoiding assumptions often leads to oversimplified models with limited parameters to mitigate the curse of dimensionality. This paper considers the use of Normalizing Flows (NF) for estimating the PDF of the parameters. NF are a class of generative models that transform a simple base distribution into a complex one using a sequence of invertible and differentiable mappings, enabling flexible, high-dimensional density estimation without restrictive assumptions on the PDF's shape. We demonstrate the effectiveness of NF in quantifying risk and risk uncertainty of an ADS, comparing its performance with Kernel Density Estimation (KDE), a traditional method for non-parametric PDF estimation. While NF require more computational resources compared to KDE, NF is less sensitive to the curse of dimensionality. As a result, NF can improve risk uncertainty estimation, offering a more precise assessment of an ADS's safety. This work illustrates the potential of NF in scenario-based safety. Future work involves experimenting more with using NF for scenario generation and optimizing the NF architecture, transformation types, and training hyperparameters to further enhance their applicability.
Related papers
- COIN: Uncertainty-Guarding Selective Question Answering for Foundation Models with Provable Risk Guarantees [51.5976496056012]
COIN is an uncertainty-guarding selection framework that calibrates statistically valid thresholds to filter a single generated answer per question.<n>COIN estimates the empirical error rate on a calibration set and applies confidence interval methods to establish a high-probability upper bound on the true error rate.<n>We demonstrate COIN's robustness in risk control, strong test-time power in retaining admissible answers, and predictive efficiency under limited calibration data.
arXiv Detail & Related papers (2025-06-25T07:04:49Z) - Principled Input-Output-Conditioned Post-Hoc Uncertainty Estimation for Regression Networks [1.4671424999873808]
Uncertainty is critical in safety-sensitive applications but is often omitted from off-the-shelf neural networks due to adverse effects on predictive performance.<n>We propose a theoretically grounded framework for post-hoc uncertainty estimation in regression tasks by fitting an auxiliary model to both original inputs and frozen model outputs.
arXiv Detail & Related papers (2025-06-01T09:13:27Z) - Contrastive Normalizing Flows for Uncertainty-Aware Parameter Estimation [0.0]
Estimating physical parameters from data is a crucial application of machine learning (ML) in the physical sciences.<n>We introduce a novel approach based on Contrastive Normalizing Flows (CNFs), which achieves top performance on the HiggsML Uncertainty Challenge dataset.
arXiv Detail & Related papers (2025-05-13T16:14:34Z) - Revisiting Essential and Nonessential Settings of Evidential Deep Learning [70.82728812001807]
Evidential Deep Learning (EDL) is an emerging method for uncertainty estimation.
We propose Re-EDL, a simplified yet more effective variant of EDL.
arXiv Detail & Related papers (2024-10-01T04:27:07Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Conditional-Flow NeRF: Accurate 3D Modelling with Reliable Uncertainty
Quantification [44.598503284186336]
Conditional-Flow NeRF (CF-NeRF) is a novel probabilistic framework to incorporate uncertainty quantification into NeRF-based approaches.
CF-NeRF learns a distribution over all possible radiance fields modelling which is used to quantify the uncertainty associated with the modelled scene.
arXiv Detail & Related papers (2022-03-18T23:26:20Z) - Differential privacy and robust statistics in high dimensions [49.50869296871643]
High-dimensional Propose-Test-Release (HPTR) builds upon three crucial components: the exponential mechanism, robust statistics, and the Propose-Test-Release mechanism.
We show that HPTR nearly achieves the optimal sample complexity under several scenarios studied in the literature.
arXiv Detail & Related papers (2021-11-12T06:36:40Z) - Stochastic Neural Radiance Fields:Quantifying Uncertainty in Implicit 3D
Representations [19.6329380710514]
Uncertainty quantification is a long-standing problem in Machine Learning.
We propose Neural Radiance Fields (S-NeRF), a generalization of standard NeRF that learns a probability distribution over all the possible fields modeling the scene.
S-NeRF is able to provide more reliable predictions and confidence values than generic approaches previously proposed for uncertainty estimation in other domains.
arXiv Detail & Related papers (2021-09-05T16:56:43Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - A Kernel Framework to Quantify a Model's Local Predictive Uncertainty
under Data Distributional Shifts [21.591460685054546]
Internal layer outputs of a trained neural network contain all of the information related to both its mapping function and its input data distribution.
We propose a framework for predictive uncertainty quantification of a trained neural network that explicitly estimates the PDF of its raw prediction space.
The kernel framework is observed to provide model uncertainty estimates with much greater precision based on the ability to detect model prediction errors.
arXiv Detail & Related papers (2021-03-02T00:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.