Physics-constrained generative machine learning-based high-resolution downscaling of Greenland's surface mass balance and surface temperature
- URL: http://arxiv.org/abs/2507.22485v1
- Date: Wed, 30 Jul 2025 08:43:48 GMT
- Title: Physics-constrained generative machine learning-based high-resolution downscaling of Greenland's surface mass balance and surface temperature
- Authors: Nils Bochow, Philipp Hess, Alexander Robinson,
- Abstract summary: High-resolution projections of the Greenland ice sheet's surface mass balance (SMB) and surface temperature are essential for understanding future sea-level rise.<n>Here, we introduce a novel physics-constrained generative modeling framework based on a consistency model (CM) to downscale low-resolution SMB and surface temperature fields.<n>Our approach delivers realistic, high-resolution climate forcing for ice-sheet simulations with fast inference.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate, high-resolution projections of the Greenland ice sheet's surface mass balance (SMB) and surface temperature are essential for understanding future sea-level rise, yet current approaches are either computationally demanding or limited to coarse spatial scales. Here, we introduce a novel physics-constrained generative modeling framework based on a consistency model (CM) to downscale low-resolution SMB and surface temperature fields by a factor of up to 32 (from 160 km to 5 km grid spacing) in a few sampling steps. The CM is trained on monthly outputs of the regional climate model MARv3.12 and conditioned on ice-sheet topography and insolation. By enforcing a hard conservation constraint during inference, we ensure approximate preservation of SMB and temperature sums on the coarse spatial scale as well as robust generalization to extreme climate states without retraining. On the test set, our constrained CM achieves a continued ranked probability score of 6.31 mmWE for the SMB and 0.1 K for the surface temperature, outperforming interpolation-based downscaling. Together with spatial power-spectral analysis, we demonstrate that the CM faithfully reproduces variability across spatial scales. We further apply bias-corrected outputs of the NorESM2 Earth System Model as inputs to our CM, to demonstrate the potential of our model to directly downscale ESM fields. Our approach delivers realistic, high-resolution climate forcing for ice-sheet simulations with fast inference and can be readily integrated into Earth-system and ice-sheet model workflows to improve projections of the future contribution to sea-level rise from Greenland and potentially other ice sheets and glaciers too.
Related papers
- Advancing Seasonal Prediction of Tropical Cyclone Activity with a Hybrid AI-Physics Climate Model [2.5701544858386396]
Machine learning models are successful with weather forecasting and have shown progress in climate simulations.<n>We show this feasibility using Neural General Circulation Model (NeuralGCM), a hybrid ML-physics atmospheric model developed by Google.
arXiv Detail & Related papers (2025-04-30T19:42:16Z) - Learning to generate physical ocean states: Towards hybrid climate modeling [1.5845117761091052]
Ocean General Circulation Models require extensive computational resources to reach equilibrium states.<n>Deep learning emulators, despite offering fast predictions, lack the physical interpretability and long-term stability necessary for climate scientists.<n>We propose to take the best from both worlds by leveraging deep generative models to produce physically consistent oceanic states.
arXiv Detail & Related papers (2025-02-04T17:14:41Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Expanding Mars Climate Modeling: Interpretable Machine Learning for
Modeling MSL Relative Humidity [0.0]
We propose a novel approach to Martian climate modeling by leveraging machine learning techniques.
Our study presents a deep neural network designed to accurately model relative humidity in Gale Crater.
We find that our neural network can effectively model relative humidity at Gale crater using a few meteorological variables.
arXiv Detail & Related papers (2023-09-04T08:15:15Z) - Machine-learned climate model corrections from a global storm-resolving
model [0.0]
We train neural networks to learn the state-dependent temperature, humidity, and radiative flux corrections needed to nudge a 200 km climate model to the evolution of a 3km fine-grid storm-resolving model (GSRM)
When these corrective ML models are coupled to a year-long coarse-grid climate simulation, the time-mean spatial pattern errors are reduced by 6-25% for land surface temperature and 9-25% for land surface precipitation.
arXiv Detail & Related papers (2022-11-21T19:39:05Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
We find a third intermediate stable state in one of the two climate models we consider.
The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production drastically change the topography of Earth's climate.
arXiv Detail & Related papers (2020-10-20T15:31:38Z) - Augmented Convolutional LSTMs for Generation of High-Resolution Climate
Change Projections [1.7503398807380832]
We present auxiliary informed-temporal neural architecture for statistical downscaling.
Current study performs daily downscaling of precipitation variable from an ESM output at 1.15 degrees (115 km) to 0.25 degrees (25 km) over the world's most climatically diversified country, India.
arXiv Detail & Related papers (2020-09-23T17:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.