Quantum Krylov Subspace Diagonalization via Time Reversal Symmetries
- URL: http://arxiv.org/abs/2507.22559v1
- Date: Wed, 30 Jul 2025 10:35:36 GMT
- Title: Quantum Krylov Subspace Diagonalization via Time Reversal Symmetries
- Authors: Nicola Mariella, Enrique Rico, Adam Byrne, Sergiy Zhuk,
- Abstract summary: We introduce a novel protocol, which we call Krylov Time Reversal (KTR)<n>We show that it is possible to recover real-valued Krylov matrix elements, which significantly reduces the circuit depth.<n>We validate our method through numerical simulations on paradigmatic Hamiltonians exhibiting time-reversal symmetry.
- Score: 0.562479170374811
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Krylov quantum diagonalization methods have emerged as a promising use case for quantum computers. However, many existing implementations rely on controlled operations, which pose challenges to near-term quantum hardware. We introduce a novel protocol, which we call Krylov Time Reversal (KTR), which avoids these bottlenecks by exploiting the time-reversal symmetry in Hamiltonian evolution. Using symmetric time dynamics, we show that it is possible to recover real-valued Krylov matrix elements, which significantly reduces the circuit depth and enhances compatibility with shallow quantum architectures. We validate our method through numerical simulations on paradigmatic Hamiltonians exhibiting time-reversal symmetry, including the transverse-field Ising model and a lattice gauge theory, demonstrating accurate spectral estimation and favorable circuit constructions.
Related papers
- Exact Model Reduction for Continuous-Time Open Quantum Dynamics [0.0]
We consider finite-dimensional many-body quantum systems described by time-independent Hamiltonians and Markovian master equations.<n>We present a systematic method for constructing smaller-dimensional, reduced models that reproduce the time evolution of a set of initial conditions or observables of interest.
arXiv Detail & Related papers (2024-12-06T15:00:58Z) - A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - Symmetry enhanced variational quantum imaginary time evolution [1.6872254218310017]
We provide guidance for constructing parameterized quantum circuits according to the locality and symmetries of the Hamiltonian.
Our approach can be used to implement the unitary and anti-unitary symmetries of a quantum system.
Numerical results confirm that the symmetry-enhanced circuits outperform the frequently-used parametrized circuits in the literature.
arXiv Detail & Related papers (2023-07-25T16:00:34Z) - Adaptive construction of shallower quantum circuits with quantum spin
projection for fermionic systems [0.0]
Current devices only allow for hybrid quantum-classical algorithms with a shallow circuit depth, such as variational quantum eigensolver (VQE)
In this study, we report the importance of the Hamiltonian symmetry in constructing VQE circuits adaptively.
We demonstrate that symmetry-projection can provide a simple yet effective solution to this problem, by keeping the quantum state in the correct symmetry space, to reduce the overall gate operations.
arXiv Detail & Related papers (2022-05-14T17:08:18Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Realizing a dynamical topological phase in a trapped-ion quantum
simulator [0.0]
Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics.
We show how to create, protect, and manipulate quantum entanglement that self-correct against large classes of errors.
Our work paves the way for implementation of more complex dynamical topological orders that would enable error-resilient techniques to manipulate quantum information.
arXiv Detail & Related papers (2021-07-20T18:00:00Z) - Lattice Renormalization of Quantum Simulations [8.771066413050963]
We show that trotterized time-evolution operators can be related by analytic continuation to the Euclidean transfer matrix on an anisotropic lattice.
Based on the tools of Euclidean lattice field theory, we propose two schemes to determine Minkowski lattice spacings.
arXiv Detail & Related papers (2021-07-02T16:10:45Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.