Realizing a dynamical topological phase in a trapped-ion quantum
simulator
- URL: http://arxiv.org/abs/2107.09676v1
- Date: Tue, 20 Jul 2021 18:00:00 GMT
- Title: Realizing a dynamical topological phase in a trapped-ion quantum
simulator
- Authors: Philipp T. Dumitrescu, Justin Bohnet, John Gaebler, Aaron Hankin,
David Hayes, Ajesh Kumar, Brian Neyenhuis, Romain Vasseur, Andrew C. Potter
- Abstract summary: Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics.
We show how to create, protect, and manipulate quantum entanglement that self-correct against large classes of errors.
Our work paves the way for implementation of more complex dynamical topological orders that would enable error-resilient techniques to manipulate quantum information.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nascent platforms for programmable quantum simulation offer unprecedented
access to new regimes of far-from-equilibrium quantum many-body dynamics in
(approximately) isolated systems. Here, achieving precise control over quantum
many-body entanglement is an essential task for quantum sensing and
computation. Extensive theoretical work suggests that these capabilities can
enable dynamical phases and critical phenomena that exhibit
topologically-robust methods to create, protect, and manipulate quantum
entanglement that self-correct against large classes of errors. However, to
date, experimental realizations have been confined to classical (non-entangled)
symmetry-breaking orders. In this work, we demonstrate an emergent dynamical
symmetry protected topological phase (EDSPT), in a quasiperiodically-driven
array of ten $^{171}\text{Yb}^+$ hyperfine qubits in Honeywell's System Model
H1 trapped-ion quantum processor. This phase exhibits edge qubits that are
dynamically protected from control errors, cross-talk, and stray fields.
Crucially, this edge protection relies purely on emergent dynamical symmetries
that are absolutely stable to generic coherent perturbations. This property is
special to quasiperiodically driven systems: as we demonstrate, the analogous
edge states of a periodically driven qubit-array are vulnerable to
symmetry-breaking errors and quickly decohere. Our work paves the way for
implementation of more complex dynamical topological orders that would enable
error-resilient techniques to manipulate quantum information.
Related papers
- Symmetry-protection Zeno phase transition in monitored lattice gauge theories [0.0]
We show the existence of a sharp transition, triggered by the measurement rate, between a protected gauge-theory regime and an irregular regime.
Our results shed light on the dissipative criticality of strongly-interacting, highly-constrained quantum systems.
arXiv Detail & Related papers (2024-05-28T18:18:06Z) - Stabilizing Quantum Simulators Of Gauge Theories Against $1/f$ Noise [0.0]
This thesis investigates the application of quantum simulation in the ongoing "second" quantum revolution.
Gauge theories are of particular interest in modern quantum simulators as they offer a new probe of high-energy physics on low-energy tabletop devices.
arXiv Detail & Related papers (2024-02-26T18:37:35Z) - Edge modes and symmetry-protected topological states in open quantum
systems [0.0]
Topological order offers possibilities for processing quantum information which can be immune to imperfections.
We show robustness of certain aspects of $ZZtimes Z$ symmetry-protected trajectory (SPT) order against a wide class of dissipation channels.
Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases.
arXiv Detail & Related papers (2023-10-13T21:09:52Z) - Overhead-constrained circuit knitting for variational quantum dynamics [0.0]
We use circuit knitting to partition a large quantum system into smaller subsystems that can each be simulated on a separate device.
We show that the same method can be used to reduce the circuit depth by cutting long-ranged gates.
arXiv Detail & Related papers (2023-09-14T17:01:06Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
arXiv Detail & Related papers (2022-09-07T15:50:00Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Probing quantum information propagation with out-of-time-ordered
correlators [41.12790913835594]
Small-scale quantum information processors hold the promise to efficiently emulate many-body quantum systems.
Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs)
A central requirement for our experiments is the ability to coherently reverse time evolution.
arXiv Detail & Related papers (2021-02-23T15:29:08Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Faster Digital Quantum Simulation by Symmetry Protection [0.6554326244334866]
We show that by introducing quantum gates implementing unitary transformations one can induce destructive interference between the errors from different steps of the simulation.
In particular, when the symmetry transformations are chosen as powers of a unitary, the error of the algorithm is approximately projected to the so-called quantum Zeno subspaces.
We apply the symmetry protection technique to the simulations of the XXZ Heisenberg interactions with local disorder and the Schwinger model in quantum field theory.
arXiv Detail & Related papers (2020-06-29T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.