Graph-Guided Dual-Level Augmentation for 3D Scene Segmentation
- URL: http://arxiv.org/abs/2507.22668v1
- Date: Wed, 30 Jul 2025 13:25:36 GMT
- Title: Graph-Guided Dual-Level Augmentation for 3D Scene Segmentation
- Authors: Hongbin Lin, Yifan Jiang, Juangui Xu, Jesse Jiaxi Xu, Yi Lu, Zhengyu Hu, Ying-Cong Chen, Hao Wang,
- Abstract summary: 3D point cloud segmentation aims to assign semantic labels to individual points in a scene for fine-grained spatial understanding.<n>Existing methods typically adopt data augmentation to alleviate the burden of large-scale annotation.<n>We propose a graph-guided data augmentation framework with dual-level constraints for realistic 3D scene synthesis.
- Score: 21.553363236403822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D point cloud segmentation aims to assign semantic labels to individual points in a scene for fine-grained spatial understanding. Existing methods typically adopt data augmentation to alleviate the burden of large-scale annotation. However, most augmentation strategies only focus on local transformations or semantic recomposition, lacking the consideration of global structural dependencies within scenes. To address this limitation, we propose a graph-guided data augmentation framework with dual-level constraints for realistic 3D scene synthesis. Our method learns object relationship statistics from real-world data to construct guiding graphs for scene generation. Local-level constraints enforce geometric plausibility and semantic consistency between objects, while global-level constraints maintain the topological structure of the scene by aligning the generated layout with the guiding graph. Extensive experiments on indoor and outdoor datasets demonstrate that our framework generates diverse and high-quality augmented scenes, leading to consistent improvements in point cloud segmentation performance across various models.
Related papers
- EgoSplat: Open-Vocabulary Egocentric Scene Understanding with Language Embedded 3D Gaussian Splatting [108.15136508964011]
EgoSplat is a language-embedded 3D Gaussian Splatting framework for open-vocabulary egocentric scene understanding.<n>EgoSplat achieves state-of-the-art performance in both localization and segmentation tasks on two datasets.
arXiv Detail & Related papers (2025-03-14T12:21:26Z) - GaussianGraph: 3D Gaussian-based Scene Graph Generation for Open-world Scene Understanding [20.578106363482018]
We propose a novel framework that enhances 3DGS-based scene understanding by integrating semantic clustering and scene graph generation.<n>We introduce a "Control-Follow" clustering strategy, which dynamically adapts to scene scale and feature distribution, avoiding feature compression.<n>We enrich scene representation by integrating object attributes and spatial relations extracted from 2D foundation models.
arXiv Detail & Related papers (2025-03-06T02:36:59Z) - Open-Vocabulary Octree-Graph for 3D Scene Understanding [54.11828083068082]
Octree-Graph is a novel scene representation for open-vocabulary 3D scene understanding.
An adaptive-octree structure is developed that stores semantics and depicts the occupancy of an object adjustably according to its shape.
arXiv Detail & Related papers (2024-11-25T10:14:10Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - A Data-efficient Framework for Robotics Large-scale LiDAR Scene Parsing [10.497309421830671]
Existing state-of-the-art 3D point clouds understanding methods only perform well in a fully supervised manner.
This work presents a general and simple framework to tackle point clouds understanding when labels are limited.
arXiv Detail & Related papers (2023-12-03T02:38:51Z) - CommonScenes: Generating Commonsense 3D Indoor Scenes with Scene Graph
Diffusion [83.30168660888913]
We present CommonScenes, a fully generative model that converts scene graphs into corresponding controllable 3D scenes.
Our pipeline consists of two branches, one predicting the overall scene layout via a variational auto-encoder and the other generating compatible shapes.
The generated scenes can be manipulated by editing the input scene graph and sampling the noise in the diffusion model.
arXiv Detail & Related papers (2023-05-25T17:39:13Z) - Iterative Scene Graph Generation [55.893695946885174]
Scene graph generation involves identifying object entities and their corresponding interaction predicates in a given image (or video)
Existing approaches to scene graph generation assume certain factorization of the joint distribution to make the estimation iteration feasible.
We propose a novel framework that addresses this limitation, as well as introduces dynamic conditioning on the image.
arXiv Detail & Related papers (2022-07-27T10:37:29Z) - Dual Adaptive Transformations for Weakly Supervised Point Cloud
Segmentation [78.6612285236938]
We propose a novel DAT (textbfDual textbfAdaptive textbfTransformations) model for weakly supervised point cloud segmentation.
We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets.
arXiv Detail & Related papers (2022-07-19T05:43:14Z) - Weakly Supervised Semantic Segmentation in 3D Graph-Structured Point
Clouds of Wild Scenes [36.07733308424772]
The deficiency of 3D segmentation labels is one of the main obstacles to effective point cloud segmentation.
We propose a novel deep graph convolutional network-based framework for large-scale semantic scene segmentation in point clouds with sole 2D supervision.
arXiv Detail & Related papers (2020-04-26T23:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.