OFCnetLLM: Large Language Model for Network Monitoring and Alertness
- URL: http://arxiv.org/abs/2507.22711v1
- Date: Wed, 30 Jul 2025 14:22:42 GMT
- Title: OFCnetLLM: Large Language Model for Network Monitoring and Alertness
- Authors: Hong-Jun Yoon, Mariam Kiran, Danial Ebling, Joe Breen,
- Abstract summary: This paper explores the use of Large Language Models (LLMs) to revolutionize network monitoring management.<n>We leverage LLMs to enhance anomaly detection, automate root-cause analysis, and automate incident analysis to build a well-monitored network management team using AI.<n>Our model is developed as a multi-agent approach and is still evolving, and we present early results here.
- Score: 0.7379838047227086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid evolution of network infrastructure is bringing new challenges and opportunities for efficient network management, optimization, and security. With very large monitoring databases becoming expensive to explore, the use of AI and Generative AI can help reduce costs of managing these datasets. This paper explores the use of Large Language Models (LLMs) to revolutionize network monitoring management by addressing the limitations of query finding and pattern analysis. We leverage LLMs to enhance anomaly detection, automate root-cause analysis, and automate incident analysis to build a well-monitored network management team using AI. Through a real-world example of developing our own OFCNetLLM, based on the open-source LLM model, we demonstrate practical applications of OFCnetLLM in the OFC conference network. Our model is developed as a multi-agent approach and is still evolving, and we present early results here.
Related papers
- AI/ML Life Cycle Management for Interoperable AI Native RAN [50.61227317567369]
Artificial intelligence (AI) and machine learning (ML) models are rapidly permeating the 5G Radio Access Network (RAN)<n>These developments lay the foundation for AI-native transceivers as a key enabler for 6G.
arXiv Detail & Related papers (2025-07-24T16:04:59Z) - Intent-Based Network for RAN Management with Large Language Models [1.5588799679661638]
This paper proposes a novel automation approach for Radio Access Networks (RANs) management by leveraging Large Language Models (LLMs)<n>The proposed method enhances intent translation, autonomously interpreting high-level objectives, reasoning over complex network states, and generating precise configurations of the RAN.<n>It showcases the potential to enable robust resource management in RAN by adapting strategies based on real-time feedback via LLM-orchestrated agentic systems.
arXiv Detail & Related papers (2025-07-17T04:57:55Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - Large-Scale AI in Telecom: Charting the Roadmap for Innovation, Scalability, and Enhanced Digital Experiences [212.5544743797899]
Large Telecom Models (LTMs) are tailored AI models designed to address the complex challenges faced by modern telecom networks.<n>The paper covers a wide range of topics, from the architecture and deployment strategies of LTMs to their applications in network management, resource allocation, and optimization.
arXiv Detail & Related papers (2025-03-06T07:53:24Z) - Network Resource Optimization for ML-Based UAV Condition Monitoring with Vibration Analysis [54.550658461477106]
Condition Monitoring (CM) uses Machine Learning (ML) models to identify abnormal and adverse conditions.<n>This work explores the optimization of network resources for ML-based UAV CM frameworks.<n>By leveraging dimensionality reduction techniques, there is a 99.9% reduction in network resource consumption.
arXiv Detail & Related papers (2025-02-21T14:36:12Z) - Can LLMs Understand Computer Networks? Towards a Virtual System Administrator [15.469010487781931]
This paper is the first to conduct an exhaustive study on Large Language Models' comprehension of computer networks.
We evaluate our framework on multiple computer networks employing proprietary (e.g., GPT4) and open-source (e.g., Llama2) models.
arXiv Detail & Related papers (2024-04-19T07:41:54Z) - NetLLM: Adapting Large Language Models for Networking [36.61572542761661]
We present NetLLM, the first framework that provides a coherent design to harness the powerful capabilities of LLMs with low efforts to solve networking problems.
Specifically, NetLLM empowers the LLM to effectively process multimodal data in networking and efficiently generate task-specific answers.
arXiv Detail & Related papers (2024-02-04T04:21:34Z) - Large Multi-Modal Models (LMMs) as Universal Foundation Models for
AI-Native Wireless Systems [57.41621687431203]
Large language models (LLMs) and foundation models have been recently touted as a game-changer for 6G systems.
This paper presents a comprehensive vision on how to design universal foundation models tailored towards the deployment of artificial intelligence (AI)-native networks.
arXiv Detail & Related papers (2024-01-30T00:21:41Z) - Enhancing Network Management Using Code Generated by Large Language
Models [15.557254786007325]
We introduce a novel approach to facilitate a natural-language-based network management experience, utilizing large language models (LLMs) to generate task-specific code from natural language queries.
This method tackles the challenges of explainability, scalability, and privacy by allowing network operators to inspect the generated code.
We design and evaluate a prototype system using benchmark applications, showcasing high accuracy, cost-effectiveness, and the potential for further enhancements.
arXiv Detail & Related papers (2023-08-11T17:49:15Z) - Harnessing Scalable Transactional Stream Processing for Managing Large
Language Models [Vision] [4.553891255178496]
Large Language Models (LLMs) have demonstrated extraordinary performance across a broad array of applications.
This paper introduces TStreamLLM, a revolutionary framework integrating Transactional Stream Processing (TSP) with LLM management.
We showcase its potential through practical use cases like real-time patient monitoring and intelligent traffic management.
arXiv Detail & Related papers (2023-07-17T04:01:02Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.