Teaching the Teacher: Improving Neural Network Distillability for Symbolic Regression via Jacobian Regularization
- URL: http://arxiv.org/abs/2507.22767v2
- Date: Fri, 01 Aug 2025 07:50:37 GMT
- Title: Teaching the Teacher: Improving Neural Network Distillability for Symbolic Regression via Jacobian Regularization
- Authors: Soumyadeep Dhar, Kei Sen Fong, Mehul Motani,
- Abstract summary: Distilling complex neural networks into simple, human-readable symbolic formulas is a promising path toward trustworthy and interpretable AI.<n>We propose a novel training paradigm to address this challenge.<n>Instead of passively distilling a pre-trained network, we introduce a textbfJacobian-based regularizer that actively encourages the teacher'' network to learn functions that are not only accurate but also inherently smoother and more amenable to distillation.
- Score: 17.033055327465238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distilling large neural networks into simple, human-readable symbolic formulas is a promising path toward trustworthy and interpretable AI. However, this process is often brittle, as the complex functions learned by standard networks are poor targets for symbolic discovery, resulting in low-fidelity student models. In this work, we propose a novel training paradigm to address this challenge. Instead of passively distilling a pre-trained network, we introduce a \textbf{Jacobian-based regularizer} that actively encourages the ``teacher'' network to learn functions that are not only accurate but also inherently smoother and more amenable to distillation. We demonstrate through extensive experiments on a suite of real-world regression benchmarks that our method is highly effective. By optimizing the regularization strength for each problem, we improve the $R^2$ score of the final distilled symbolic model by an average of \textbf{120\% (relative)} compared to the standard distillation pipeline, all while maintaining the teacher's predictive accuracy. Our work presents a practical and principled method for significantly improving the fidelity of interpretable models extracted from complex neural networks.
Related papers
- Learning to Continually Learn with the Bayesian Principle [36.75558255534538]
In this work, we adopt the meta-learning paradigm to combine the strong representational power of neural networks and simple statistical models' robustness to forgetting.
Since the neural networks remain fixed during continual learning, they are protected from catastrophic forgetting.
arXiv Detail & Related papers (2024-05-29T04:53:31Z) - Neural Network-Based Score Estimation in Diffusion Models: Optimization
and Generalization [12.812942188697326]
Diffusion models have emerged as a powerful tool rivaling GANs in generating high-quality samples with improved fidelity, flexibility, and robustness.
A key component of these models is to learn the score function through score matching.
Despite empirical success on various tasks, it remains unclear whether gradient-based algorithms can learn the score function with a provable accuracy.
arXiv Detail & Related papers (2024-01-28T08:13:56Z) - Neural Network Pruning by Gradient Descent [7.427858344638741]
We introduce a novel and straightforward neural network pruning framework that incorporates the Gumbel-Softmax technique.
We demonstrate its exceptional compression capability, maintaining high accuracy on the MNIST dataset with only 0.15% of the original network parameters.
We believe our method opens a promising new avenue for deep learning pruning and the creation of interpretable machine learning systems.
arXiv Detail & Related papers (2023-11-21T11:12:03Z) - Accurate Neural Network Pruning Requires Rethinking Sparse Optimization [87.90654868505518]
We show the impact of high sparsity on model training using the standard computer vision and natural language processing sparsity benchmarks.
We provide new approaches for mitigating this issue for both sparse pre-training of vision models and sparse fine-tuning of language models.
arXiv Detail & Related papers (2023-08-03T21:49:14Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
sinusoidal neural networks with activations have been proposed as an alternative to networks with traditional activation functions.
We first propose a simplified version of such sinusoidal neural networks, which allows both for easier practical implementation and simpler theoretical analysis.
We then analyze the behavior of these networks from the neural tangent kernel perspective and demonstrate that their kernel approximates a low-pass filter with an adjustable bandwidth.
arXiv Detail & Related papers (2022-11-26T07:41:48Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
We show that neural networks trained using gradient descent initially classify their inputs using lower-order input statistics.
We then exploit higher-order statistics only later during training.
We discuss the relation of DSB to other simplicity biases and consider its implications for the principle of universality in learning.
arXiv Detail & Related papers (2022-11-21T15:27:22Z) - Slimmable Networks for Contrastive Self-supervised Learning [69.9454691873866]
Self-supervised learning makes significant progress in pre-training large models, but struggles with small models.
We introduce another one-stage solution to obtain pre-trained small models without the need for extra teachers.
A slimmable network consists of a full network and several weight-sharing sub-networks, which can be pre-trained once to obtain various networks.
arXiv Detail & Related papers (2022-09-30T15:15:05Z) - How does unlabeled data improve generalization in self-training? A
one-hidden-layer theoretical analysis [93.37576644429578]
This work establishes the first theoretical analysis for the known iterative self-training paradigm.
We prove the benefits of unlabeled data in both training convergence and generalization ability.
Experiments from shallow neural networks to deep neural networks are also provided to justify the correctness of our established theoretical insights on self-training.
arXiv Detail & Related papers (2022-01-21T02:16:52Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
We analyze the performance of training a pruned neural network by analyzing the geometric structure of the objective function.
We show that the convex region near a desirable model with guaranteed generalization enlarges as the neural network model is pruned.
arXiv Detail & Related papers (2021-10-12T01:11:07Z) - Fast Adaptation with Linearized Neural Networks [35.43406281230279]
We study the inductive biases of linearizations of neural networks, which we show to be surprisingly good summaries of the full network functions.
Inspired by this finding, we propose a technique for embedding these inductive biases into Gaussian processes through a kernel designed from the Jacobian of the network.
In this setting, domain adaptation takes the form of interpretable posterior inference, with accompanying uncertainty estimation.
arXiv Detail & Related papers (2021-03-02T03:23:03Z) - Deep Ordinal Regression with Label Diversity [19.89482062012177]
We propose that using several discrete data representations simultaneously can improve neural network learning.
Our approach is end-to-end differentiable and can be added as a simple extension to conventional learning methods.
arXiv Detail & Related papers (2020-06-29T08:23:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.