論文の概要: Reading Between the Timelines: RAG for Answering Diachronic Questions
- arxiv url: http://arxiv.org/abs/2507.22917v1
- Date: Mon, 21 Jul 2025 05:19:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-03 20:19:02.936618
- Title: Reading Between the Timelines: RAG for Answering Diachronic Questions
- Title(参考訳): タイムライン間の読み込み: ダイアクロニック質問に対するRAG
- Authors: Kwun Hang Lau, Ruiyuan Zhang, Weijie Shi, Xiaofang Zhou, Xiaojun Cheng,
- Abstract要約: 我々は、時間論理を注入するためにRAGパイプラインを根本的に再設計する新しいフレームワークを提案する。
提案手法は回答精度を大幅に向上し,標準RAG実装を13%から27%上回る結果となった。
この研究はRAGシステムに対する検証された経路を提供し、複雑な現実世界の質問に必要とされるニュアンス付き進化分析を行うことができる。
- 参考スコア(独自算出の注目度): 8.969698902720799
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While Retrieval-Augmented Generation (RAG) excels at injecting static, factual knowledge into Large Language Models (LLMs), it exhibits a critical deficit in handling longitudinal queries that require tracking entities and phenomena across time. This blind spot arises because conventional, semantically-driven retrieval methods are not equipped to gather evidence that is both topically relevant and temporally coherent for a specified duration. We address this challenge by proposing a new framework that fundamentally redesigns the RAG pipeline to infuse temporal logic. Our methodology begins by disentangling a user's query into its core subject and its temporal window. It then employs a specialized retriever that calibrates semantic matching against temporal relevance, ensuring the collection of a contiguous evidence set that spans the entire queried period. To enable rigorous evaluation of this capability, we also introduce the Analytical Diachronic Question Answering Benchmark (ADQAB), a challenging evaluation suite grounded in a hybrid corpus of real and synthetic financial news. Empirical results on ADQAB show that our approach yields substantial gains in answer accuracy, surpassing standard RAG implementations by 13% to 27%. This work provides a validated pathway toward RAG systems capable of performing the nuanced, evolutionary analysis required for complex, real-world questions. The dataset and code for this study are publicly available at https://github.com/kwunhang/TA-RAG.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は、Large Language Models (LLMs) に静的な事実知識を注入することに長けているが、時間をかけてエンティティや現象を追跡することを必要とする時系列クエリを扱う上では、重大な欠陥がある。
この盲点は、従来の意味論的に駆動された検索手法では、特定の期間において、トポロジー的に関連があり、時間的に一貫性のある証拠を収集することができないため生じる。
我々は、時間論理を注入するためにRAGパイプラインを根本的に再設計する新しいフレームワークを提案することで、この問題に対処する。
私たちの方法論は、ユーザのクエリをその中核となる主題とその時間的ウィンドウに切り離すことから始まります。
次に、時間的関連性に対するセマンティックマッチングを校正する特殊なレトリバーを使用し、クエリ期間全体にわたる連続したエビデンスセットを確実に収集する。
また,この能力の厳密な評価を可能にするために,実・合成ファイナンシャルニュースのハイブリッドコーパスに根ざした課題評価スイートであるAnalytical Diachronic Question Answering Benchmark (ADQAB)を導入する。
ADQABにおける実験結果から,本手法は標準RAG実装を13%から27%超え,解答精度を大幅に向上させることが示された。
この研究はRAGシステムに対する検証された経路を提供し、複雑な現実世界の質問に必要とされるニュアンス付き進化分析を行うことができる。
この研究のデータセットとコードはhttps://github.com/kwunhang/TA-RAG.comで公開されている。
関連論文リスト
- Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) は、外部知識を注入することによって、Large Language Models (LLM) の事実性を高める。
逆に、純粋に推論指向のアプローチは、しばしば幻覚的あるいは誤った事実を必要とする。
この調査は両鎖を統一的推論-検索の観点から合成する。
論文 参考訳(メタデータ) (2025-07-13T03:29:41Z) - Respecting Temporal-Causal Consistency: Entity-Event Knowledge Graphs for Retrieval-Augmented Generation [69.45495166424642]
我々は,物語文書における時間的,因果的,文字的整合性を理解するために,頑健で差別的なQAベンチマークを開発する。
次に、バイナリマッピングでリンクされたエンティティとイベントのサブグラフを分離したまま保持するデュアルグラフフレームワークであるEntity-Event RAG(E2RAG)を紹介します。
ChronoQA全体で、我々のアプローチは最先端の非構造化およびKGベースのRAGベースラインよりも優れており、因果一貫性クエリや文字整合性クエリが顕著である。
論文 参考訳(メタデータ) (2025-06-06T10:07:21Z) - Faithfulness-Aware Uncertainty Quantification for Fact-Checking the Output of Retrieval Augmented Generation [108.13261761812517]
本稿では,RAG出力における幻覚検出の新しい手法であるFRANQ(Fithfulness-based Retrieval Augmented Uncertainty Quantification)を紹介する。
本稿では,事実性と忠実性の両方に注釈を付したQAデータセットを提案する。
論文 参考訳(メタデータ) (2025-05-27T11:56:59Z) - Relevance Isn't All You Need: Scaling RAG Systems With Inference-Time Compute Via Multi-Criteria Reranking [0.0]
標準的なRAGパイプラインでは、コンテキスト関連性のみを最大化することで、ダウンストリーム応答の品質を低下させることができることを示す。
本稿では,Rerankyond reLevance (REBEL)を導入し,推論時間計算でRAGシステムをスケールできるようにする。
論文 参考訳(メタデータ) (2025-03-14T00:19:39Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
検索拡張世代(RAG)は,外部知識ソースを統合することで言語モデルを強化する強力なアプローチとして注目されている。
本稿では、リアルタイム検索をバイパスする代替パラダイムであるキャッシュ拡張生成(CAG)を提案する。
論文 参考訳(メタデータ) (2024-12-20T06:58:32Z) - MRAG: A Modular Retrieval Framework for Time-Sensitive Question Answering [3.117448929160824]
大規模言語モデル(LLM)を用いた質問応答システムにおいて,時間的関係と応答時間に敏感な質問
我々は、時間的摂動と金のエビデンスラベルを組み込むことで、既存のデータセットを再利用するTempRAGEvalベンチマークを導入する。
TempRAGEvalでは、MRAGが検索性能においてベースラインレトリバーを著しく上回り、最終回答精度がさらに向上した。
論文 参考訳(メタデータ) (2024-12-20T03:58:27Z) - RAG-QA Arena: Evaluating Domain Robustness for Long-form Retrieval Augmented Question Answering [61.19126689470398]
Long-form RobustQA (LFRQA)は、7つの異なるドメインにわたる26Kクエリと大きなコーパスをカバーする新しいデータセットである。
RAG-QAアリーナと人間の回答品質判断は高い相関関係にあることを示す。
最も競争力のあるLLMの回答の41.3%のみがLFRQAの回答に好まれており、RAG-QAアリーナは将来の研究の挑戦的な評価プラットフォームであることを示している。
論文 参考訳(メタデータ) (2024-07-19T03:02:51Z) - Generation-Augmented Retrieval for Open-domain Question Answering [134.27768711201202]
GAR(Generation-Augmented Retrieval)は、オープンドメインの質問に答える機能である。
クエリーに対して多様なコンテキストを生成することは、結果の融合が常により良い検索精度をもたらすので有益であることを示す。
GARは、抽出読取装置を備えた場合、抽出QA設定の下で、自然質問およびトリビアQAデータセットの最先端性能を達成する。
論文 参考訳(メタデータ) (2020-09-17T23:08:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。