PRGB Benchmark: A Robust Placeholder-Assisted Algorithm for Benchmarking Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2507.22927v1
- Date: Wed, 23 Jul 2025 16:14:08 GMT
- Title: PRGB Benchmark: A Robust Placeholder-Assisted Algorithm for Benchmarking Retrieval-Augmented Generation
- Authors: Zhehao Tan, Yihan Jiao, Dan Yang, Lei Liu, Jie Feng, Duolin Sun, Yue Shen, Jian Wang, Peng Wei, Jinjie Gu,
- Abstract summary: Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating external knowledge.<n>Current benchmarks emphasize broad aspects such as noise robustness, but lack a systematic and granular evaluation framework on document utilization.<n>Our benchmark provides a reproducible framework for developing more reliable and efficient RAG systems.
- Score: 15.230902967865925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating external knowledge, where the LLM's ability to generate responses based on the combination of a given query and retrieved documents is crucial. However, most benchmarks focus on overall RAG system performance, rarely assessing LLM-specific capabilities. Current benchmarks emphasize broad aspects such as noise robustness, but lack a systematic and granular evaluation framework on document utilization. To this end, we introduce \textit{Placeholder-RAG-Benchmark}, a multi-level fine-grained benchmark, emphasizing the following progressive dimensions: (1) multi-level filtering abilities, (2) combination abilities, and (3) reference reasoning. To provide a more nuanced understanding of LLMs' roles in RAG systems, we formulate an innovative placeholder-based approach to decouple the contributions of the LLM's parametric knowledge and the external knowledge. Experiments demonstrate the limitations of representative LLMs in the RAG system's generation capabilities, particularly in error resilience and context faithfulness. Our benchmark provides a reproducible framework for developing more reliable and efficient RAG systems. Our code is available in https://github.com/Alipay-Med/PRGB.
Related papers
- RAG in the Wild: On the (In)effectiveness of LLMs with Mixture-of-Knowledge Retrieval Augmentation [45.679455112940175]
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by integrating external knowledge retrieved at inference time.<n>We evaluated RAG systems using MassiveDS, a large-scale datastore with mixture of knowledge, and identified critical limitations.
arXiv Detail & Related papers (2025-07-26T20:57:24Z) - LaRA: Benchmarking Retrieval-Augmented Generation and Long-Context LLMs -- No Silver Bullet for LC or RAG Routing [70.35888047551643]
We present LaRA, a novel benchmark specifically designed to rigorously compare RAG and LC LLMs.<n>LaRA encompasses 2326 test cases across four practical QA task categories and three types of naturally occurring long texts.<n>We find that the optimal choice between RAG and LC depends on a complex interplay of factors, including the model's parameter size, long-text capabilities, context length, task type, and the characteristics of the retrieved chunks.
arXiv Detail & Related papers (2025-02-14T08:04:22Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - ChunkRAG: Novel LLM-Chunk Filtering Method for RAG Systems [2.8692611791027893]
Retrieval-Augmented Generation (RAG) systems generate inaccurate responses due to the retrieval of irrelevant or loosely related information.<n>We propose ChunkRAG, a framework that enhances RAG systems by evaluating and filtering retrieved information at the chunk level.
arXiv Detail & Related papers (2024-10-25T14:07:53Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) is a paradigm that integrates external contextual information with large language models (LLMs) to enhance factual accuracy and relevance.
We introduce SFR-RAG, a small LLM that is instruction-textual with an emphasis on context-grounded generation and hallucination.
We also present ConBench, a new evaluation framework compiling multiple popular and diverse RAG benchmarks.
arXiv Detail & Related papers (2024-09-16T01:08:18Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.<n>With a focus on factual accuracy, we propose three novel metrics: Completeness, Hallucination, and Irrelevance.<n> Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting [68.90949377014742]
Speculative RAG is a framework that leverages a larger generalist LM to efficiently verify multiple RAG drafts produced in parallel by a smaller, distilled specialist LM.<n>Our method accelerates RAG by delegating drafting to the smaller specialist LM, with the larger generalist LM performing a single verification pass over the drafts.<n>It notably enhances accuracy by up to 12.97% while reducing latency by 50.83% compared to conventional RAG systems on PubHealth.
arXiv Detail & Related papers (2024-07-11T06:50:19Z) - BERGEN: A Benchmarking Library for Retrieval-Augmented Generation [26.158785168036662]
Retrieval-Augmented Generation allows to enhance Large Language Models with external knowledge.
Inconsistent benchmarking poses a major challenge in comparing approaches and understanding the impact of each component in the pipeline.
In this work, we study best practices that lay the groundwork for a systematic evaluation of RAG and present BERGEN, an end-to-end library for reproducible research standardizing RAG experiments.
arXiv Detail & Related papers (2024-07-01T09:09:27Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender systems (RSs) depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables.<n>Despite the prosperity of lightweight embedding-based RSs, a wide diversity is seen in evaluation protocols.<n>This study investigates various LERS' performance, efficiency, and cross-task transferability via a thorough benchmarking process.
arXiv Detail & Related papers (2024-06-25T07:45:00Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z) - Ragas: Automated Evaluation of Retrieval Augmented Generation [23.253210019550377]
Ragas is a framework for evaluation of Retrieval Augmented Generation pipelines.<n>RAG systems are composed of a retrieval and an LLM based generation module.
arXiv Detail & Related papers (2023-09-26T19:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.