Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting
- URL: http://arxiv.org/abs/2407.08223v2
- Date: Thu, 27 Feb 2025 19:03:36 GMT
- Title: Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting
- Authors: Zilong Wang, Zifeng Wang, Long Le, Huaixiu Steven Zheng, Swaroop Mishra, Vincent Perot, Yuwei Zhang, Anush Mattapalli, Ankur Taly, Jingbo Shang, Chen-Yu Lee, Tomas Pfister,
- Abstract summary: Speculative RAG is a framework that leverages a larger generalist LM to efficiently verify multiple RAG drafts produced in parallel by a smaller, distilled specialist LM.<n>Our method accelerates RAG by delegating drafting to the smaller specialist LM, with the larger generalist LM performing a single verification pass over the drafts.<n>It notably enhances accuracy by up to 12.97% while reducing latency by 50.83% compared to conventional RAG systems on PubHealth.
- Score: 68.90949377014742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval augmented generation (RAG) combines the generative abilities of large language models (LLMs) with external knowledge sources to provide more accurate and up-to-date responses. Recent RAG advancements focus on improving retrieval outcomes through iterative LLM refinement or self-critique capabilities acquired through additional instruction tuning of LLMs. In this work, we introduce Speculative RAG - a framework that leverages a larger generalist LM to efficiently verify multiple RAG drafts produced in parallel by a smaller, distilled specialist LM. Each draft is generated from a distinct subset of retrieved documents, offering diverse perspectives on the evidence while reducing input token counts per draft. This approach enhances comprehension of each subset and mitigates potential position bias over long context. Our method accelerates RAG by delegating drafting to the smaller specialist LM, with the larger generalist LM performing a single verification pass over the drafts. Extensive experiments demonstrate that Speculative RAG achieves state-of-the-art performance with reduced latency on TriviaQA, MuSiQue, PopQA, PubHealth, and ARC-Challenge benchmarks. It notably enhances accuracy by up to 12.97% while reducing latency by 50.83% compared to conventional RAG systems on PubHealth.
Related papers
- Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
We propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization.
SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge.
We introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision.
arXiv Detail & Related papers (2025-04-01T17:59:30Z) - U-NIAH: Unified RAG and LLM Evaluation for Long Context Needle-In-A-Haystack [9.760456105567078]
This paper introduces U-NIAH, a unified framework that systematically compares Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG)
Our framework incorporates multi-needle, long-needle, and needle-in-needle configurations, along with different retrieval settings.
Our findings show that RAG significantly enhances smaller LLMs by mitigating the "lost-in-the-middle" effect and improving robustness.
arXiv Detail & Related papers (2025-03-01T05:05:24Z) - Long-Context Inference with Retrieval-Augmented Speculative Decoding [7.785459677641105]
Long-context large language models (LLMs) offer a promising alternative to traditional retrieval-augmented generation (RAG)
We present Retrieval-Augmented Speculative Decoding (RAPID), which leverages RAG for both accelerating and enhancing generation quality.
Our approach enables a new paradigm where same-scale or even larger LLMs can serve as RAG drafters while maintaining computational efficiency.
arXiv Detail & Related papers (2025-02-27T17:59:36Z) - RoseRAG: Robust Retrieval-augmented Generation with Small-scale LLMs via Margin-aware Preference Optimization [53.63439735067081]
Large language models (LLMs) have achieved impressive performance but face high computational costs and latency.
Retrieval-augmented generation (RAG) helps by integrating external knowledge, but imperfect retrieval can introduce distracting noise that misleads SLMs.
We propose RoseRAG, a robust RAG framework for SLMs via Margin-aware Preference Optimization.
arXiv Detail & Related papers (2025-02-16T04:56:53Z) - LaRA: Benchmarking Retrieval-Augmented Generation and Long-Context LLMs -- No Silver Bullet for LC or RAG Routing [70.35888047551643]
We present LaRA, a novel benchmark specifically designed to rigorously compare RAG and LC LLMs.
LaRA encompasses 2326 test cases across four practical QA task categories and three types of naturally occurring long texts.
We find that the optimal choice between RAG and LC depends on a complex interplay of factors, including the model's parameter size, long-text capabilities, context length, task type, and the characteristics of the retrieved chunks.
arXiv Detail & Related papers (2025-02-14T08:04:22Z) - LLMQuoter: Enhancing RAG Capabilities Through Efficient Quote Extraction From Large Contexts [2.685668802278156]
We introduce LLMQuoter, a lightweight, distillation-based model designed to enhance Retrieval Augmented Generation (RAG)
Built on the LLaMA-3B architecture and fine-tuned with Low-Rank Adaptation (LoRA) on a 15,000-sample subset of HotpotQA, LLMQuoter adopts a "quote-first-then-answer" strategy, efficiently identifying key quotes before passing curated snippets to reasoning models.
This workflow reduces cognitive overhead and outperforms full-context approaches like Retrieval-Augmented Fine-Tuning (RAFT), achieving over 20-point accuracy gains across both small and large language
arXiv Detail & Related papers (2025-01-09T20:01:15Z) - An Early FIRST Reproduction and Improvements to Single-Token Decoding for Fast Listwise Reranking [50.81324768683995]
FIRST is a novel approach that integrates a learning-to-rank objective and leveraging the logits of only the first generated token.
We extend the evaluation of FIRST to the TREC Deep Learning datasets (DL19-22), validating its robustness across diverse domains.
Our experiments confirm that fast reranking with single-token logits does not compromise out-of-domain reranking quality.
arXiv Detail & Related papers (2024-11-08T12:08:17Z) - Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG [36.754491649652664]
Retrieval-augmented generation (RAG) empowers large language models (LLMs) to utilize external knowledge sources.
This paper investigates the detrimental impact of retrieved "hard negatives" as a key contributor.
To mitigate this and enhance the robustness of long-context LLM-based RAG, we propose both training-free and training-based approaches.
arXiv Detail & Related papers (2024-10-08T12:30:07Z) - A Hybrid RAG System with Comprehensive Enhancement on Complex Reasoning [13.112610550392537]
Retrieval-augmented generation (RAG) is a framework enabling large language models to enhance their accuracy and reduce hallucinations by integrating external knowledge bases.
We introduce a hybrid RAG system enhanced through a comprehensive suite of optimizations that significantly improve retrieval quality, augment reasoning capabilities, and refine numerical ability.
arXiv Detail & Related papers (2024-08-09T15:53:55Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.
With a focus on factual accuracy, we propose three novel metrics: Completeness, Hallucination, and Irrelevance.
Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - A Theory for Token-Level Harmonization in Retrieval-Augmented Generation [76.75124161306795]
Retrieval-augmented generation (RAG) utilizes retrieved texts to enhance large language models (LLMs)
This paper provides a theory to explain and trade off the benefit and detriment in RAG.
Based on our theory, we propose a practical novel method, Tok-RAG, which achieves collaborative generation between the pure LLM and RAG.
arXiv Detail & Related papers (2024-06-03T02:56:14Z) - Accelerating Inference of Retrieval-Augmented Generation via Sparse Context Selection [28.15184715270483]
Large language models (LLMs) augmented with retrieval exhibit robust performance and extensive versatility.
We propose a novel paradigm named Sparse RAG, which seeks to cut costs through sparsity.
Sparse RAG encodes retrieved documents in parallel, which eliminates latency introduced by long-range attention of retrieved documents.
arXiv Detail & Related papers (2024-05-25T11:10:04Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - Prompt Perturbation in Retrieval-Augmented Generation based Large Language Models [9.688626139309013]
Retrieval-Augmented Generation is considered as a means to improve the trustworthiness of text generation from large language models.
In this work, we find that the insertion of even a short prefix to the prompt leads to the generation of outputs far away from factually correct answers.
We introduce a novel optimization technique called Gradient Guided Prompt Perturbation.
arXiv Detail & Related papers (2024-02-11T12:25:41Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z) - Benchmarking Large Language Models in Retrieval-Augmented Generation [53.504471079548]
We systematically investigate the impact of Retrieval-Augmented Generation on large language models.
We analyze the performance of different large language models in 4 fundamental abilities required for RAG.
We establish Retrieval-Augmented Generation Benchmark (RGB), a new corpus for RAG evaluation in both English and Chinese.
arXiv Detail & Related papers (2023-09-04T08:28:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.