Field digitization scaling in a $\mathbb{Z}_N \subset U(1)$ symmetric model
- URL: http://arxiv.org/abs/2507.22984v1
- Date: Wed, 30 Jul 2025 18:00:02 GMT
- Title: Field digitization scaling in a $\mathbb{Z}_N \subset U(1)$ symmetric model
- Authors: Gabriele Calliari, Robert Ott, Hannes Pichler, Torsten V. Zache,
- Abstract summary: We propose to analyze field digitization by interpreting the parameter $N$ as a coupling in the renormalization group sense.<n>Using effective field theory, we derive generalized scaling hypotheses involving the FD parameter $N$.<n>We analytically prove that our calculations for the 2D classical-statistical $mathbbZ_N$ clock model are directly related to the quantum physics in the ground state of a (2+1)D $mathbbZ_N$ lattice gauge theory.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The simulation of quantum field theories, both classical and quantum, requires regularization of infinitely many degrees of freedom. However, in the context of field digitization (FD) -- a truncation of the local fields to $N$ discrete values -- a comprehensive framework to obtain continuum results is currently missing. Here, we propose to analyze FD by interpreting the parameter $N$ as a coupling in the renormalization group (RG) sense. As a first example, we investigate the two-dimensional classical $N$-state clock model as a $\mathbb{Z}_N$ FD of the $U(1)$-symmetric $XY$-model. Using effective field theory, we employ the RG to derive generalized scaling hypotheses involving the FD parameter $N$, which allows us to relate data obtained for different $N$-regularized models in a procedure that we term $\textit{field digitization scaling}$ (FDS). Using numerical tensor-network calculations at finite bond dimension $\chi$, we further uncover an unconventional universal crossover around a low-temperature phase transition induced by finite $N$, demonstrating that FDS can be extended to describe the interplay of $\chi$ and $N$. Finally, we analytically prove that our calculations for the 2D classical-statistical $\mathbb{Z}_N$ clock model are directly related to the quantum physics in the ground state of a (2+1)D $\mathbb{Z}_N$ lattice gauge theory which serves as a FD of compact quantum electrodynamics. Our study thus paves the way for applications of FDS to quantum simulations of more complex models in higher spatial dimensions, where it could serve as a tool to analyze the continuum limit of digitized quantum field theories.
Related papers
- Approximation of diffeomorphisms for quantum state transfers [49.1574468325115]
We seek to combine two emerging standpoints in control theory.<n>We numerically find control laws driving state transitions in small time in a bilinear Schr"odinger PDE posed on the torus.
arXiv Detail & Related papers (2025-03-18T17:28:59Z) - Large N vector models in the Hamiltonian framework [0.0]
We first present the method in the simpler setting of a quantum mechanical system with quartic interactions.<n>We then apply these techniques to the $O(N)$ model in $2+1$ and $3+1$ dimensions.<n>We recover various known results, such as the gap equation determining the ground state of the system.
arXiv Detail & Related papers (2025-02-12T00:18:02Z) - Bridging conformal field theory and parton approaches to SU(n)_k chiral spin liquids [48.225436651971805]
We employ the $mathrmSU(n)_k$ Wess-Zumino-Witten (WZW) model in conformal field theory to construct lattice wave functions in both one and two dimensions.<n>The spins on all lattice sites are chosen to transform under the $mathrmSU(n)$ irreducible representation with a single row and $k$ boxes in the Young tableau.
arXiv Detail & Related papers (2025-01-16T14:42:00Z) - Second quantization for classical nonlinear dynamics [0.0]
We propose a framework for representing the evolution of observables of measure-preserving ergodic flows through infinite-dimensional rotation systems on tori.<n>We show that their Banach algebra spectra, $sigma(F_w(mathcal H_tau)$, decompose into a family of tori of potentially infinite dimension.<n>Our scheme also employs a procedure for representing observables of the original system by reproducing functions on finite-dimensional tori in $sigma(F_w(mathcal H_tau)$ of arbitrarily large degree.
arXiv Detail & Related papers (2025-01-13T15:36:53Z) - Towards the phase diagram of fermions coupled with $SO(3)$ quantum links in $(2+1)$-D [0.0]
Quantum link models (QLMs) are generalizations of Wilson's lattice gauge theory formulated with finite-dimensional link Hilbert spaces.<n>We extend the model to $(2+1)d$ dimensions for the first time, and report on our initial results.
arXiv Detail & Related papers (2024-12-12T19:13:05Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - $\mathbb{Z}_N$ lattice gauge theories with matter fields [0.0]
We study fermions and bosons in $mathbb Z_N$ lattice gauge theories.
We present analytical arguments for the most important phases and estimates for phase boundaries of the model.
arXiv Detail & Related papers (2023-08-24T21:05:15Z) - Theory of free fermions under random projective measurements [43.04146484262759]
We develop an analytical approach to the study of one-dimensional free fermions subject to random projective measurements of local site occupation numbers.
We derive a non-linear sigma model (NLSM) as an effective field theory of the problem.
arXiv Detail & Related papers (2023-04-06T15:19:33Z) - Quantum Simulation of Two-Dimensional $\mathrm{U(1)}$ Gauge Theory in Rydberg and Rydberg-Dressed Atom Arrays [11.6046949234691]
We propose a simple realization of $mathrmU(1)$ gauge theory on triangular lattice Rydberg atom arrays.<n>Within experimentally accessible range, we find that the effective model well simulates various aspects of the $mathrmU(1)$ gauge theory.
arXiv Detail & Related papers (2022-12-21T09:09:56Z) - Realistic scheme for quantum simulation of $\mathbb{Z}_2$ lattice gauge
theories with dynamical matter in $(2+1)$D [0.0]
We propose a realistic scheme for Rydberg atom array experiments in which a $mathbbZ$ gauge structure with dynamical charges emerges on experimentally relevant timescales.
We discuss ground-state phase diagrams of the experimentally most effective $mathbbZ$ lattice gauge theories with dynamical matter.
We present selected probes with immediate relevance, including signatures of disorder-free localization and a thermal deconfinement transition of two charges.
arXiv Detail & Related papers (2022-05-17T18:00:00Z) - Lessons from $O(N)$ models in one dimension [0.0]
Various topics related to the $O(N)$ model in one spacetime dimension (i.e. ordinary quantum mechanics) are considered.
The focus is on a pedagogical presentation of quantum field theory methods in a simpler context.
arXiv Detail & Related papers (2021-09-14T11:36:30Z) - Quantum double aspects of surface code models [77.34726150561087]
We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry.
We show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$.
arXiv Detail & Related papers (2021-06-25T17:03:38Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.