Probing Bound State Relaxation Dynamics in Systems Out-of-Equilibrium on Quantum Computers
- URL: http://arxiv.org/abs/2507.22988v1
- Date: Wed, 30 Jul 2025 18:00:04 GMT
- Title: Probing Bound State Relaxation Dynamics in Systems Out-of-Equilibrium on Quantum Computers
- Authors: Heba A. Labib, Goksu Can Toga, J. K. Freericks, A. F. Kemper,
- Abstract summary: Pump-probe spectroscopy is a powerful tool for probing response dynamics of quantum many-body systems in and out-of-equilibrium.<n>Quantum computers have proved useful in simulating such experiments by exciting the system, evolving, and then measuring observables to first order.<n>Our work sets the stage for simulating systems out-of-equilibrium on classical and quantum computers using pump-probe experiments without needing ancillary qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pump-probe spectroscopy is a powerful tool for probing response dynamics of quantum many-body systems in and out-of-equilibrium. Quantum computers have proved useful in simulating such experiments by exciting the system, evolving, and then measuring observables to first order, all in one setting. Here, we use this approach to investigate the mixed-field Ising model, where the longitudinal field plays the role of a confining potential that prohibits the spread of the excitations, spinons, or domain walls into space. We study the discrete bound states that arise from such a setting and their evolution under different quench dynamics by initially pumping the chain out of equilibrium and then probing various non-equal time correlation functions. Finally, we study false vacuum decay, where initially one expects unhindered propagation of the ground state, or true vacuum, bubbles into the lattice, but instead sees the emergence of Bloch oscillations that are directly the reason for the long-lived oscillations in this finite-size model. Our work sets the stage for simulating systems out-of-equilibrium on classical and quantum computers using pump-probe experiments without needing ancillary qubits.
Related papers
- Stabilization of Hubbard-Thouless pumps through nonlocal fermionic
repulsion [0.0]
Thouless pumping represents a powerful concept to probe quantized topological invariants in quantum systems.
We show that sufficiently large intersite interactions allow for an interaction-induced recovery of Thouless pumps.
Our results provide a new mechanism to stabilize Thouless pumps in interacting quantum systems.
arXiv Detail & Related papers (2023-08-25T13:34:42Z) - Resolving nonclassical magnon composition of a magnetic ground state via
a qubit [44.99833362998488]
We show that a direct dispersive coupling between a qubit and a noneigenmode magnon enables detecting the magnonic number states' quantum superposition.
This unique coupling is found to enable control over the equilibrium magnon squeezing and a deterministic generation of squeezed even Fock states.
arXiv Detail & Related papers (2023-06-08T09:30:04Z) - Squeezing oscillations in a multimode bosonic Josephson junction [0.4335300149154109]
We show how to enhance the quantum correlations in a one-dimensional multimode bosonic Josephson junction.
Our work provides new ways for engineering correlations and entanglement in the external degree of freedom of interacting many-body systems.
arXiv Detail & Related papers (2023-04-05T23:29:05Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Experimental Demonstration of Topological Charge Protection in Wigner
Current [3.093409936654924]
We reconstruct Wigner's current of quantum phase space dynamics for the first time.
We reveal the push-and-pull" associated with damping and diffusion due to the coupling of a squeezed vacuum state to its environment.
arXiv Detail & Related papers (2021-11-16T08:22:22Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Generation of coherence in an exactly solvable nonlinear nanomechanical
system [1.0775419935941009]
This study is focused on the quantum dynamics of a nitrogen-vacancy center coupled to a nonlinear, periodically driven mechanical oscillator.
We observe that the production of coherence through a unitary transformation depends on whether the system is prepared initially in mixed state.
We prove that quantum chaos and diminishing of information about the mixed initial state favors the generation of quantum coherence through the unitary evolution.
arXiv Detail & Related papers (2020-08-19T17:32:16Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Subdiffusion via Disordered Quantum Walks [52.77024349608834]
We experimentally prove the feasibility of disordered quantum walks to realize a quantum simulator that is able to model general subdiffusive phenomena.
Our experiment simulates such phenomena by means of a finely controlled insertion of various levels of disorder during the evolution of the walker.
This allows us to explore the full range of subdiffusive behaviors, ranging from anomalous Anderson localization to normal diffusion.
arXiv Detail & Related papers (2020-07-24T13:56:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.