Neural Network Architectures for Scalable Quantum State Tomography: Benchmarking and Memristor-Based Acceleration
- URL: http://arxiv.org/abs/2507.23007v1
- Date: Wed, 30 Jul 2025 18:12:10 GMT
- Title: Neural Network Architectures for Scalable Quantum State Tomography: Benchmarking and Memristor-Based Acceleration
- Authors: Erbing Hua, Steven van Ommen, King Yiu Yu, Jim van Leeuven, Rajendra Bishnoi, Heba Abunahla, Salahuddin Nur, Sebastian Feld, Ryoichi Ishihara,
- Abstract summary: Quantum State Tomography (QST) is essential for characterizing and validating quantum systems.<n>Prior claims of performance have relied on architectural assumptions rather than systematic validation.<n>We benchmark several neural network architectures to determine which scale effectively with qubit number and which fail to maintain high fidelity as system size increases.
- Score: 0.9572566550427288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum State Tomography (QST) is essential for characterizing and validating quantum systems, but its practical use is severely limited by the exponential growth of the Hilbert space and the number of measurements required for informational completeness. Many prior claims of performance have relied on architectural assumptions rather than systematic validation. We benchmark several neural network architectures to determine which scale effectively with qubit number and which fail to maintain high fidelity as system size increases.To address this, we perform a comprehensive benchmarking of diverse neural architectures across two quantum measurement strategies to evaluate their effectiveness in reconstructing both pure and mixed quantum states. Our results reveal that CNN and CGAN scale more robustly and achieve the highest fidelities, while Spiking Variational Autoencoder (SVAE) demonstrates moderate fidelity performance, making it a strong candidate for embedded, low-power hardware implementations.Recognizing that practical quantum diagnostics will require embedded, energy-efficient computation, we also discuss how memristor-based Computation-in-Memory (CiM) platforms can accelerate these models in hardware, mitigating memory bottlenecks and reducing energy consumption to enable scalable in-situ QST. This work identifies which architectures scale favorably for future quantum systems and lays the groundwork for quantum-classical co-design that is both computationally and physically scalable.
Related papers
- Enhanced image classification via hybridizing quantum dynamics with classical neural networks [0.0]
We present a hybrid protocol which combines classical neural networks with non-equilibrium dynamics of a quantum many-body system for image classification.<n>This architecture leverages classical neural networks to efficiently process high-dimensional data and encode it effectively on a quantum many-body system.
arXiv Detail & Related papers (2025-07-18T00:15:14Z) - Benchmarking fault-tolerant quantum computing hardware via QLOPS [2.0464713282534848]
To run quantum algorithms, it is essential to develop scalable quantum hardware with low noise levels.<n>Various fault-tolerant quantum computing schemes have been developed for different hardware platforms.<n>We propose Quantum Logical Operations Per Second (QLOPS) as a metric for assessing the performance of FTQC schemes.
arXiv Detail & Related papers (2025-07-16T08:31:51Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Differentiable Quantum Architecture Search in Quantum-Enhanced Neural Network Parameter Generation [4.358861563008207]
Quantum neural networks (QNNs) have shown promise both empirically and theoretically.<n> Hardware imperfections and limited access to quantum devices pose practical challenges.<n>We propose an automated solution using differentiable optimization.
arXiv Detail & Related papers (2025-05-13T19:01:08Z) - An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
Quantum machine learning (QML) is a discipline that seeks to transfer the advantages of quantum computing to data-driven tasks.<n>We propose an efficient approach that circumvents the costs associated with data encoding by mapping inputs to a finite set of Pauli strings.<n>We evaluate our approach on text and image classification tasks, against well-established classical and quantum models.
arXiv Detail & Related papers (2025-04-13T11:49:53Z) - Training Hybrid Deep Quantum Neural Network for Efficient Reinforcement Learning [2.2978333459052815]
Quantum circuits embed data in a Hilbert space whose dimensionality grows exponentially with the number of qubits.<n>We introduce qtDNN, a tangential surrogate that locally approximates a quantum circuit.<n>We design hDQNN-TD3, a hybrid deep quantum neural network for continuous-control reinforcement learning.
arXiv Detail & Related papers (2025-03-12T07:12:02Z) - Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection [3.2927352068925444]
deepfake technologies pose challenges to privacy, security, and information integrity.
This paper introduces a Quantum-Trained Convolutional Neural Network framework designed to enhance the detection of deepfake audio.
arXiv Detail & Related papers (2024-10-11T20:52:10Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Splitting and Parallelizing of Quantum Convolutional Neural Networks for
Learning Translationally Symmetric Data [0.0]
We propose a novel architecture called split-parallelizing QCNN (sp-QCNN)
By splitting the quantum circuit based on translational symmetry, the sp-QCNN can substantially parallelize the conventional QCNN without increasing the number of qubits.
We show that the sp-QCNN can achieve comparable classification accuracy to the conventional QCNN while considerably reducing the measurement resources required.
arXiv Detail & Related papers (2023-06-12T18:00:08Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.