Splitting and Parallelizing of Quantum Convolutional Neural Networks for
Learning Translationally Symmetric Data
- URL: http://arxiv.org/abs/2306.07331v3
- Date: Wed, 28 Feb 2024 02:18:18 GMT
- Title: Splitting and Parallelizing of Quantum Convolutional Neural Networks for
Learning Translationally Symmetric Data
- Authors: Koki Chinzei, Quoc Hoan Tran, Kazunori Maruyama, Hirotaka Oshima,
Shintaro Sato
- Abstract summary: We propose a novel architecture called split-parallelizing QCNN (sp-QCNN)
By splitting the quantum circuit based on translational symmetry, the sp-QCNN can substantially parallelize the conventional QCNN without increasing the number of qubits.
We show that the sp-QCNN can achieve comparable classification accuracy to the conventional QCNN while considerably reducing the measurement resources required.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum convolutional neural network (QCNN) is a promising quantum
machine learning (QML) model that is expected to achieve quantum advantages in
classically intractable problems. However, the QCNN requires a large number of
measurements for data learning, limiting its practical applications in
large-scale problems. To alleviate this requirement, we propose a novel
architecture called split-parallelizing QCNN (sp-QCNN), which exploits the
prior knowledge of quantum data to design an efficient model. This architecture
draws inspiration from geometric quantum machine learning and targets
translationally symmetric quantum data commonly encountered in physics and
quantum computing science. By splitting the quantum circuit based on
translational symmetry, the sp-QCNN can substantially parallelize the
conventional QCNN without increasing the number of qubits and improve the
measurement efficiency by an order of the number of qubits. To demonstrate its
effectiveness, we apply the sp-QCNN to a quantum phase recognition task and
show that it can achieve comparable classification accuracy to the conventional
QCNN while considerably reducing the measurement resources required. Due to its
high measurement efficiency, the sp-QCNN can mitigate statistical errors in
estimating the gradient of the loss function, thereby accelerating the learning
process. These results open up new possibilities for incorporating the prior
data knowledge into the efficient design of QML models, leading to practical
quantum advantages.
Related papers
- Resource-efficient equivariant quantum convolutional neural networks [0.0]
This study proposes a resource-efficient model of equivariant quantum convolutional neural networks (QCNNs) called equivariant split-parallelizing QCNN (sp-QCNN)
Using a group-theoretical approach, we encode general symmetries into our model beyond the translational symmetry addressed by previous sp-QCNNs.
Our results contribute to the advancement of practical quantum machine learning algorithms.
arXiv Detail & Related papers (2024-10-02T05:51:33Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Optimizing Quantum Convolutional Neural Network Architectures for Arbitrary Data Dimension [2.9396076967931526]
Quantum convolutional neural networks (QCNNs) represent a promising approach in quantum machine learning.
We propose a QCNN architecture capable of handling arbitrary input data dimensions while optimizing the allocation of quantum resources.
arXiv Detail & Related papers (2024-03-28T02:25:12Z) - Error-tolerant quantum convolutional neural networks for symmetry-protected topological phases [0.0]
Quantum neural networks based on parametrized quantum circuits, measurements and feed-forward can process large amounts of quantum data.
We construct quantum convolutional neural networks (QCNNs) that can recognize different symmetry-protected topological phases.
We show that the QCNN output is robust against symmetry-breaking errors below a threshold error probability.
arXiv Detail & Related papers (2023-07-07T16:47:02Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Branching Quantum Convolutional Neural Networks [0.0]
Small-scale quantum computers are already showing potential gains in learning tasks on large quantum and very large classical data sets.
We present a generalization of QCNN, the branching quantum convolutional neural network, or bQCNN, with substantially higher expressibility.
arXiv Detail & Related papers (2020-12-28T19:00:03Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.