論文の概要: Single Image Rain Streak Removal Using Harris Corner Loss and R-CBAM Network
- arxiv url: http://arxiv.org/abs/2507.23185v1
- Date: Thu, 31 Jul 2025 01:42:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 17:19:08.924456
- Title: Single Image Rain Streak Removal Using Harris Corner Loss and R-CBAM Network
- Title(参考訳): Harris Corner Loss と R-CBAM Network を用いた単一画像レインストリーク除去
- Authors: Jongwook Si, Sungyoung Kim,
- Abstract要約: コーナーロスを導入して復元過程を制約する新しい画像復元ネットワークを提案する。
また,Residual Convolutional Block Attention Module (R-CBAM)ブロックをエンコーダとデコーダに挿入し,空間次元とチャネル次元の両方で特徴量の重要性を動的に調整する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The problem of single-image rain streak removal goes beyond simple noise suppression, requiring the simultaneous preservation of fine structural details and overall visual quality. In this study, we propose a novel image restoration network that effectively constrains the restoration process by introducing a Corner Loss, which prevents the loss of object boundaries and detailed texture information during restoration. Furthermore, we propose a Residual Convolutional Block Attention Module (R-CBAM) Block into the encoder and decoder to dynamically adjust the importance of features in both spatial and channel dimensions, enabling the network to focus more effectively on regions heavily affected by rain streaks. Quantitative evaluations conducted on the Rain100L and Rain100H datasets demonstrate that the proposed method significantly outperforms previous approaches, achieving a PSNR of 33.29 dB on Rain100L and 26.16 dB on Rain100H.
- Abstract(参考訳): 単イメージ雨のストリーク除去の問題は、単純な騒音抑制に留まらず、微細な構造の詳細と全体的な視覚的品質を同時に保存する必要がある。
本研究では,コーナーロスを導入し,修復過程を効果的に抑制する画像復元ネットワークを提案する。
さらに,Residual Convolutional Block Attention Module (R-CBAM) ブロックをエンコーダとデコーダに挿入し,空間次元とチャネル次元の両方における特徴の重要性を動的に調整し,雨天の影響が大きい領域にネットワークがより効果的に集中できるようにする。
Rain100LとRain100Hのデータセットで行った定量的評価は、提案手法が従来の手法よりも大幅に優れており、Rain100Lでは33.29dB、Rain100Hでは26.16dBのPSNRが達成されていることを示している。
関連論文リスト
- Channel Consistency Prior and Self-Reconstruction Strategy Based Unsupervised Image Deraining [6.748447305270562]
本稿では,新しいチャネル整合性優先・自己再構成戦略に基づく教師なし画像評価フレームワークCSUDを提案する。
未ペアデータによるトレーニングでは、CSUDは高品質な擬似クリーンで雨天のイメージペアを生成することができる。
複数の合成および実世界のデータセットの実験により、CSUDの劣化性能が、他の最先端の教師なし手法を上回ることを示した。
論文 参考訳(メタデータ) (2025-03-24T14:15:48Z) - MDeRainNet: An Efficient Macro-pixel Image Rain Removal Network [42.69264615303869]
我々は,LF画像から降雨ストリーク除去を行うために,MDeRainNetと呼ばれる効率的なネットワークを提案する。
提案するネットワークはマルチスケールエンコーダデコーダアーキテクチャを採用し, 直接マクロピクセル画像(MPI)を用いて降雨除去性能を向上する。
そこで本研究では,MDeRainNetのための新しい半教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-15T14:47:02Z) - RainyScape: Unsupervised Rainy Scene Reconstruction using Decoupled Neural Rendering [50.14860376758962]
多視点降雨画像の集合からクリーンなシーンを再構築するための教師なしフレームワークであるRainyScapeを提案する。
ニューラルネットワークのスペクトルバイアス特性に基づいて、まずニューラルネットワークのレンダリングパイプラインを最適化し、低周波シーン表現を得る。
我々は2つのモジュールを協調的に最適化し,適応的指向性勾配に基づく再構成損失によって駆動する。
論文 参考訳(メタデータ) (2024-04-17T14:07:22Z) - Contrastive Learning Based Recursive Dynamic Multi-Scale Network for
Image Deraining [47.764883957379745]
雨のストリークは撮影画像の可視性を著しく低下させる。
既存のディープラーニングベースの画像デライニング手法では、手作業で構築されたネットワークを使用して、雨の降った画像から明確な画像への直接投影を学習する。
本稿では,雨天画像と澄んだ画像との相関関係を考察した,対照的な学習に基づく画像デライニング手法を提案する。
論文 参考訳(メタデータ) (2023-05-29T13:51:41Z) - From heavy rain removal to detail restoration: A faster and better
network [26.60300982543502]
そこで本研究では,DPENetと呼ばれる2段階進行性拡張ネットワークを導入し,効率的なデラリニングを実現する。
本手法は,雨害除去ネットワーク(R$2$Net)と,無雨画像のテクスチャ的詳細を復元する詳細再構成ネットワーク(DRNet)の2つの重要なモジュールから構成される。
論文 参考訳(メタデータ) (2022-05-07T04:55:05Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
本稿では,CycleGANに基づくディープネットワークの監視手法について述べる。
我々は,より効果的なトレーニングにつながるCycleGANのトレーニングに新たな損失を導入し,高品質な再構築を実現した。
提案手法は, 脱落, 脱落, 脱落といった様々な修復作業に効果的に適用できることを実証する。
論文 参考訳(メタデータ) (2022-04-23T01:30:47Z) - Semi-DRDNet Semi-supervised Detail-recovery Image Deraining Network via
Unpaired Contrastive Learning [59.22620253308322]
半教師付き詳細復元画像デラミニングネットワーク(セミDRDNet)を提案する。
半教師付き学習パラダイムとして、Semi-DRDNetは、強靭性と詳細な精度を犠牲にして、合成データと実世界の降雨データの両方を円滑に運用する。
論文 参考訳(メタデータ) (2022-04-06T12:35:27Z) - Efficient Re-parameterization Residual Attention Network For
Nonhomogeneous Image Dehazing [4.723586858098229]
ERRA-Netは1200x1600のHD画質の画像を平均166.11 fpsで処理する。
我々は, ステップ毎に高周波特徴を抽出するために, カスケードMAブロックを用い, 多層アテンション融合テールは, モデルの浅部と深部を結合してクリーン画像の残像を得る。
論文 参考訳(メタデータ) (2021-09-12T10:03:44Z) - Residual Squeeze-and-Excitation Network for Fast Image Deraining [19.48155134126906]
本稿では,高速な画像デライニングのための残差圧縮・励起ネットワークRSENを提案する。
RSENは軽量のエンコーダデコーダアーキテクチャを採用し、1つの段階で雨除去を行う。
論文 参考訳(メタデータ) (2020-06-01T07:17:01Z) - Structural Residual Learning for Single Image Rain Removal [48.87977695398587]
本研究は,本質的な降雨構造を有するネットワークの出力残余を強制することで,新たなネットワークアーキテクチャを提案する。
このような構造的残差設定は、ネットワークによって抽出された雨層が、一般的な雨害の以前の知識に微妙に従うことを保証している。
論文 参考訳(メタデータ) (2020-05-19T05:52:13Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
本稿では,LDR画像形成パイプラインの領域知識をモデルに組み込むことを提案する。
我々は,HDRto-LDR画像形成パイプラインを(1)ダイナミックレンジクリッピング,(2)カメラ応答関数からの非線形マッピング,(3)量子化としてモデル化する。
提案手法は,最先端の単一画像HDR再構成アルゴリズムに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2020-04-02T17:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。