Towards Measuring and Modeling Geometric Structures in Time Series Forecasting via Image Modality
- URL: http://arxiv.org/abs/2507.23253v1
- Date: Thu, 31 Jul 2025 05:21:13 GMT
- Title: Towards Measuring and Modeling Geometric Structures in Time Series Forecasting via Image Modality
- Authors: Mingyang Yu, Xiahui Guo, Peng chen, Zhenkai Li, Yang Shu,
- Abstract summary: Time series forecasting is critical in diverse domains such as weather forecasting, financial investment, and traffic management.<n>Traditional numerical metrics like mean squared error (MSE) can quantify point-wise accuracy, but fail to evaluate the geometric structure of time series data.<n>We propose the time series Geometric Structure Index (TGSI), a novel evaluation metric that transforms time series into images.
- Score: 7.806853840192241
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time Series forecasting is critical in diverse domains such as weather forecasting, financial investment, and traffic management. While traditional numerical metrics like mean squared error (MSE) can quantify point-wise accuracy, they fail to evaluate the geometric structure of time series data, which is essential to understand temporal dynamics. To address this issue, we propose the time series Geometric Structure Index (TGSI), a novel evaluation metric that transforms time series into images to leverage their inherent two-dimensional geometric representations. However, since the image transformation process is non-differentiable, TGSI cannot be directly integrated as a training loss. We further introduce the Shape-Aware Temporal Loss (SATL), a multi-component loss function operating in the time series modality to bridge this gap and enhance structure modeling during training. SATL combines three components: a first-order difference loss that measures structural consistency through the MSE between first-order differences, a frequency domain loss that captures essential periodic patterns using the Fast Fourier Transform while minimizing noise, and a perceptual feature loss that measures geometric structure difference in time-series by aligning temporal features with geometric structure features through a pre-trained temporal feature extractor and time-series image autoencoder. Experiments across multiple datasets demonstrate that models trained with SATL achieve superior performance in both MSE and the proposed TGSI metrics compared to baseline methods, without additional computational cost during inference.
Related papers
- Robust Group Anomaly Detection for Quasi-Periodic Network Time Series [47.60720976101336]
We propose a framework to identify unusual and interesting time series within a network time series database.<n>We develop a surrogate-based optimization algorithm that can efficiently train the seq2GMM model.
arXiv Detail & Related papers (2025-06-20T08:11:04Z) - Patch-wise Structural Loss for Time Series Forecasting [25.291749176117662]
Patch-wise Structural (PS) loss is designed to enhance structural alignment by comparing time series at the patch level.<n>PS loss captures nuanced structural discrepancies overlooked by traditional point-wise losses.<n>It integrates seamlessly with point-wise loss, simultaneously addressing local structural inconsistencies and individual time-step errors.
arXiv Detail & Related papers (2025-03-02T12:36:15Z) - Transforming Multidimensional Time Series into Interpretable Event Sequences for Advanced Data Mining [5.2863523790908955]
This paper introduces a novel proposed representation model designed to address the limitations of traditional methods in multidimensional time series (MTS) analysis.
The proposed framework has significant potential for applications across various fields, including services for monitoring and optimizing IT infrastructure, medical diagnosis through continuous patient monitoring, trend analysis, and internet businesses for tracking user behavior and forecasting.
arXiv Detail & Related papers (2024-09-22T06:27:07Z) - TS3IM: Unveiling Structural Similarity in Time Series through Image Similarity Assessment Insights [17.036869735103835]
This paper introduces the Structured Similarity Index Measure for Time Series (TS3IM)
TS3IM is inspired by the success of the Structural Similarity Index Measure (SSIM) in image analysis, tailored to address limitations by assessing structural similarity in time series.
Our experimental results show that TS3IM is 1.87 times more similar to Dynamic Time Warping (DTW) in evaluation results and improves by more than 50% in adversarial recognition.
arXiv Detail & Related papers (2024-05-10T04:00:50Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Diffeomorphic Transformations for Time Series Analysis: An Efficient
Approach to Nonlinear Warping [0.0]
The proliferation and ubiquity of temporal data across many disciplines has sparked interest for similarity, classification and clustering methods.
Traditional distance measures such as the Euclidean are not well-suited due to the time-dependent nature of the data.
This thesis proposes novel elastic alignment methods that use parametric & diffeomorphic warping transformations.
arXiv Detail & Related papers (2023-09-25T10:51:47Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis [80.56913334060404]
Time series analysis is of immense importance in applications, such as weather forecasting, anomaly detection, and action recognition.
Previous methods attempt to accomplish this directly from the 1D time series.
We ravel out the complex temporal variations into the multiple intraperiod- and interperiod-variations.
arXiv Detail & Related papers (2022-10-05T12:19:51Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Learning Monocular Visual Odometry via Self-Supervised Long-Term
Modeling [106.15327903038705]
Monocular visual odometry (VO) suffers severely from error accumulation during frame-to-frame pose estimation.
We present a self-supervised learning method for VO with special consideration for consistency over longer sequences.
We train the networks with purely self-supervised losses, including a cycle consistency loss that mimics the loop closure module in geometric VO.
arXiv Detail & Related papers (2020-07-21T17:59:01Z) - A Deep Structural Model for Analyzing Correlated Multivariate Time
Series [11.009809732645888]
We present a deep learning structural time series model which can handle correlated multivariate time series input.
The model explicitly learns/extracts the trend, seasonality, and event components.
We compare our model with several state-of-the-art methods through a comprehensive set of experiments on a variety of time series data sets.
arXiv Detail & Related papers (2020-01-02T18:48:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.