ST-SAM: SAM-Driven Self-Training Framework for Semi-Supervised Camouflaged Object Detection
- URL: http://arxiv.org/abs/2507.23307v1
- Date: Thu, 31 Jul 2025 07:41:30 GMT
- Title: ST-SAM: SAM-Driven Self-Training Framework for Semi-Supervised Camouflaged Object Detection
- Authors: Xihang Hu, Fuming Sun, Jiazhe Liu, Feilong Xu, Xiaoli Zhang,
- Abstract summary: Semi-supervised Camouflaged Object Detection (SSCOD) aims to reduce reliance on costly pixel-level annotations.<n>Existing SSCOD methods suffer from severe prediction bias and error propagation under scarce supervision.<n>We propose ST-SAM, a highly annotation-efficient yet concise framework.
- Score: 14.06736878203419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised Camouflaged Object Detection (SSCOD) aims to reduce reliance on costly pixel-level annotations by leveraging limited annotated data and abundant unlabeled data. However, existing SSCOD methods based on Teacher-Student frameworks suffer from severe prediction bias and error propagation under scarce supervision, while their multi-network architectures incur high computational overhead and limited scalability. To overcome these limitations, we propose ST-SAM, a highly annotation-efficient yet concise framework that breaks away from conventional SSCOD constraints. Specifically, ST-SAM employs Self-Training strategy that dynamically filters and expands high-confidence pseudo-labels to enhance a single-model architecture, thereby fundamentally circumventing inter-model prediction bias. Furthermore, by transforming pseudo-labels into hybrid prompts containing domain-specific knowledge, ST-SAM effectively harnesses the Segment Anything Model's potential for specialized tasks to mitigate error accumulation in self-training. Experiments on COD benchmark datasets demonstrate that ST-SAM achieves state-of-the-art performance with only 1\% labeled data, outperforming existing SSCOD methods and even matching fully supervised methods. Remarkably, ST-SAM requires training only a single network, without relying on specific models or loss functions. This work establishes a new paradigm for annotation-efficient SSCOD. Codes will be available at https://github.com/hu-xh/ST-SAM.
Related papers
- ConformalSAM: Unlocking the Potential of Foundational Segmentation Models in Semi-Supervised Semantic Segmentation with Conformal Prediction [57.930531826380836]
This work explores whether a foundational segmentation model can address label scarcity in the pixel-level vision task as an annotator for unlabeled images.<n>We propose ConformalSAM, a novel SSSS framework which first calibrates the foundation model using the target domain's labeled data and then filters out unreliable pixel labels of unlabeled data.
arXiv Detail & Related papers (2025-07-21T17:02:57Z) - Segment Concealed Objects with Incomplete Supervision [63.637733655439334]
Incompletely-Supervised Concealed Object (ISCOS) involves segmenting objects that seamlessly blend into their surrounding environments.<n>This task remains highly challenging due to the limited supervision provided by the incompletely annotated training data.<n>In this paper, we introduce the first unified method for ISCOS to address these challenges.
arXiv Detail & Related papers (2025-06-10T16:25:15Z) - S^4M: Boosting Semi-Supervised Instance Segmentation with SAM [25.94737539065708]
Semi-supervised instance segmentation poses challenges due to limited labeled data.<n>Current teacher-student frameworks still suffer from performance constraints due to unreliable pseudo-label quality.
arXiv Detail & Related papers (2025-04-07T17:59:10Z) - Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance (UOIS) is crucial for autonomous robots operating in unstructured environments.
We propose UOIS-SAM, a data-efficient solution for the UOIS task.
UOIS-SAM integrates two key components: (i) a Heatmap-based Prompt Generator (HPG) to generate class-agnostic point prompts with precise foreground prediction, and (ii) a Hierarchical Discrimination Network (HDNet) that adapts SAM's mask decoder.
arXiv Detail & Related papers (2024-09-23T19:05:50Z) - Agnostic Sharpness-Aware Minimization [29.641227264358704]
Sharpness-aware (SAM) has been instrumental in improving deep neural network training by minimizing both the training loss and the sharpness of the loss landscape.
Model-Agnostic Meta-Learning (MAML) is a framework designed to improve the adaptability of models.
We introduce Agnostic-SAM, a novel approach that combines the principles of both SAM and MAML.
arXiv Detail & Related papers (2024-06-11T09:49:00Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - BLO-SAM: Bi-level Optimization Based Overfitting-Preventing Finetuning
of SAM [37.1263294647351]
We introduce BLO-SAM, which finetunes the Segment Anything Model (SAM) based on bi-level optimization (BLO)
BLO-SAM reduces the risk of overfitting by training the model's weight parameters and the prompt embedding on two separate subsets of the training dataset.
Results demonstrate BLO-SAM's superior performance over various state-of-the-art image semantic segmentation methods.
arXiv Detail & Related papers (2024-02-26T06:36:32Z) - Stable Segment Anything Model [79.9005670886038]
The Segment Anything Model (SAM) achieves remarkable promptable segmentation given high-quality prompts.
This paper presents the first comprehensive analysis on SAM's segmentation stability across a diverse spectrum of prompt qualities.
Our solution, termed Stable-SAM, offers several advantages: 1) improved SAM's segmentation stability across a wide range of prompt qualities, while 2) retaining SAM's powerful promptable segmentation efficiency and generality.
arXiv Detail & Related papers (2023-11-27T12:51:42Z) - Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and
Semi-Supervised Semantic Segmentation [119.009033745244]
This paper presents a Self-supervised Low-Rank Network ( SLRNet) for single-stage weakly supervised semantic segmentation (WSSS) and semi-supervised semantic segmentation (SSSS)
SLRNet uses cross-view self-supervision, that is, it simultaneously predicts several attentive LR representations from different views of an image to learn precise pseudo-labels.
Experiments on the Pascal VOC 2012, COCO, and L2ID datasets demonstrate that our SLRNet outperforms both state-of-the-art WSSS and SSSS methods with a variety of different settings.
arXiv Detail & Related papers (2022-03-19T09:19:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.